
Specification of CAN Driver
AUTOSAR Release 4.2.2

1 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 CanHwObjectCount parameter multiplicity is
changed to 1

 Error Classification has changed

 Improved 8.4.2 Enabling/Disabling wakeup
notification

 DET has been renamed from "Development
Error Tracer" to "Default Error Tracer

 Small improvements and minor bug-fixes

4.2.1 AUTOSAR
Release
Management

 Full CAN FD Support (incl. Trigger Transmit)

 Removed CanIf_CancelTxConfirmation

 Time-out and wake up event handling

 Small improvements and minor bug-fixes

4.1.3 AUTOSAR
Release
Management

 Added new reqirements SWS_CAN_00497,
SWS_CAN_00498, SWS_CAN_00499, and
SWS_CAN_00496

 Modified reqirements ECUC_Can_00445,
SWS_CAN_00487, SWS_CAN_00469,
SWS_CAN_00475, and SWS_CAN_00479

 Removed reqirements SWS_CAN_00476, and
SWS_Can_00414

4.1.2 AUTOSAR
Release
Management

 Removed the 'Timing' row from the API table(s)
of chapter 'Scheduled Functions'

 Modified range of Can_IdType and
CAN_CHANGE_BAUDRATE_SUPPORT to
CAN_CHANGE_BAUDRATE_API

 Editorial changes

 Removed chapter(s) on change documentation

Document Title Specification of CAN Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 011

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Specification of CAN Driver
AUTOSAR Release 4.2.2

2 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.1.1 AUTOSAR
Administration

 Added support for Pretended Networking

 Add DET error CAN_E_PARAM_BAUDRATE to
the error classification table

 Corrected the sequence for
EcuM_SetWakeupEvent in section 7.7

 Updated Can_CheckWakeup as Configurable
API

 Added support to have more than one
CanMailbox per HRH in order to receive back to
back messages

 Can_ChangeBaudrate and Can_CheckBaudrate
API are deprecated and will be replaced by
Can_SetBaudrate API

4.0.3 AUTOSAR
Administration

 Added SWS_Can_00461 to capture - Detection
of Power ON of controller due to CAN
communication

 Changed Can_InitController to
Can_ChangeBaudrate

 Added Can_CheckBaudrate

 Added sub container
CanMainFunctionRWPeriods to CanGeneral

 Changed CanHardwareObject container

 Updated description of ECUC_Can_00321

 Changed Can_SetControllerMode in
SWS_Can_00370 to Can_Mainfunction_Mode

 Added CanControllerDefaultBaudrate parameter

 Updated description of SWS_Can_00279

 Updated description of CAN321

 Added SWS_Can_00445, SWS_Can_00446
and SWS_Can_00447 to capture Possible loss
of CAN Wakeup

 Changed “Module Short Name”
(MODULENAME) to “Module Abbreviation”
(MAB)

4.0.1 AUTOSAR
Administration

 Modified SWS_Can_00111 to correct the
“Version Checking” information

 Added new requirements SWS_Can_00435 to
SWS_Can_00440 to introduce
Can_GeneralTypes.h.

 Added new requirements SWS_Can_00441 and
SWS_Can_00442 to introduce multiple poll
cycles

 Added new requirements SWS_Can_00443 and
SWS_Can_00444 to provide an optional
callback on every reception of a LPDU

Specification of CAN Driver
AUTOSAR Release 4.2.2

3 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Document Change History
Release Changed by Change Description

3.1.4 AUTOSAR
Administration

 General improvements of requirements in
preparation of CT-development.

 Can_MainFunction_Mode added to support
asynchronous controller state change

 Limited number of supported message objects
removed

 Description of CAN controller state transitions
improved

 Debbuging concept added

 Legal disclaimer revised

3.1.1 AUTOSAR
Administration

 Legal disclaimer revised

3.0.2 AUTOSAR
Administration

 Table formatting corrected



3.0.1 AUTOSAR
Administration

 Tables generated from UML-models,

 General improvements of requirements in
preparation of CT-development.

 Functions Can_MainFunction_Write,
Can_MainFunction_Read,
Can_MainFunction_BusOff and
Can_MainFunction_WakeUp changed to
scheduled functions

 Cycle Parameters added for new scheduled
functions

 Wakeup concept added (Chapter 7.7) and
addition of function Can_Cbk_CheckWakeup

 Document meta information extended

 Small layout adaptations made

Specification of CAN Driver
AUTOSAR Release 4.2.2

4 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Document Change History
Release Changed by Change Description

2.1.15 AUTOSAR
Administration

 File structure reworked (chapter 5.5)

 Removed return value CAN_WAKEUP in
function Can_SetControllerMode

 Replaced by CAN_NOT_OK

 Renamed CanIf_ControllerWakeup to
CanIf_SetWakeupEvent

 Reworked development errors (chapter 7.10)

 Removed implementation specific description in
Can_Write

 Changed timing of cyclic functions to “fixed
cyclic”

 Reworked “Scope” for all configuration variables
(chapter 10.2)

 Legal disclaimer revised

 Release notes added

 “Advice for users” revised

 “Revision Information” added



2.0 AUTOSAR
Administration

 Document structure adapted to common
Release 2.0 SWS Template

 clarified development and production error
handling and function abortion

 multiplexed transmission and TX cancellation

 version check

 configuration description according template

 individual main functions for RX TX and status



1.0 AUTOSAR
Administration

 Initial release

Specification of CAN Driver
AUTOSAR Release 4.2.2

5 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Specification of CAN Driver
AUTOSAR Release 4.2.2

6 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Table of Content

1 Introduction and functional overview ... 9

2 Acronyms and abbreviations ... 10

2.1 Priority Inversion... 11

2.2 CAN Hardware Unit .. 13

3 Related documentation ... 14

3.1 Input documents ... 14
3.2 Related standards and norms .. 15
3.3 Related specification .. 15

4 Constraints and assumptions .. 16

4.1 Limitations .. 16
4.2 Applicability to car domains .. 16

5 Dependencies to other modules .. 17

5.1 Static Configuration .. 17
5.2 Driver Services ... 17
5.3 System Services... 17

5.4 Can module Users .. 18
5.5 File structure .. 19

5.5.1 Header file structure .. 19

6 Requirements traceability .. 21

7 Functional specification ... 32

7.1 Driver scope ... 32

7.2 Driver State Machine .. 33
7.3 CAN Controller State Machine ... 33

7.3.1 CAN Controller State Description .. 34
7.3.2 CAN Controller State Transitions .. 35
7.3.3 State transition caused by function Can_Init 36

7.3.4 State transition caused by function Can_SetBaudrate 36
7.3.5 State transition caused by function Can_SetControllerMode 37

7.3.6 State transition caused by Hardware Events....................................... 39
7.4 Can module/Controller Initialization .. 40
7.5 L-PDU transmission ... 41

7.5.1 Priority Inversion ... 42
7.5.2 Transmit Data Consistency ... 43

7.6 L-PDU reception ... 44
7.6.1 Receive Data Consistency .. 44

7.7 Wakeup concept... 46
7.8 Notification concept .. 46
7.9 Reentrancy issues .. 47
7.10 Pretended Networking .. 47

7.10.1 Support Pretended Networking mode handling 48
7.10.2 Support autonomous sending and receiving of messages 49

7.11 Error classification .. 49

Specification of CAN Driver
AUTOSAR Release 4.2.2

7 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.11.1 Development Errors .. 50

7.11.2 Runtime Errors .. 50
7.11.3 Transient Faults .. 50
7.11.4 Production Errors .. 51
7.11.5 Return Values ... 51

7.12 CAN FD Support .. 51

8 API specification .. 53

8.1 Imported types.. 53
8.2 Type definitions .. 54

8.2.1 Can_ConfigType ... 54
8.2.2 Can_PduType ... 54

8.2.3 Can_IdType... 54

8.2.4 Can_HwHandleType ... 55

8.2.5 Can_HwType .. 55
8.2.6 Can_StateTransitionType ... 55
8.2.7 Can_ReturnType ... 55

8.3 Function definitions .. 56

8.3.1 Services affecting the complete hardware unit 56
8.3.1.1 Can_Init ... 56

8.3.1.2 Can_GetVersionInfo .. 57
8.3.1.3 Can_CheckBaudrate ... 57

8.3.2 Services affecting one single CAN Controller 58

8.3.2.1 Can_ChangeBaudrate ... 58
8.3.2.2 Can_SetBaudrate .. 59

8.3.2.3 Can_SetControllerMode .. 60

8.3.2.4 Can_DisableControllerInterrupts ... 62
8.3.2.5 Can_EnableControllerInterrupts .. 63
8.3.2.6 Can_CheckWakeup ... 63

8.3.3 Services affecting a Hardware Handle .. 64

8.3.3.1 Can_Write .. 64
8.4 Call-back notifications .. 66

8.4.1 Call-out function .. 66
8.4.2 Enabling/Disabling wakeup notification ... 67

8.5 Scheduled functions ... 67

8.5.1.1 Can_MainFunction_Write .. 67
8.5.1.2 Can_MainFunction_Read .. 68

8.5.1.3 Can_MainFunction_BusOff .. 68

8.5.1.4 Can_MainFunction_Wakeup ... 69

8.5.1.5 Can_MainFunction_Mode.. 69
8.6 Expected Interfaces .. 70

8.6.1 Mandatory Interfaces .. 70
8.6.2 Optional Interfaces .. 70
8.6.3 Configurable interfaces ... 71

8.7 API supporting Pretended Networking ... 71

9 Sequence diagrams .. 73

9.1 Interaction between Can and CanIf module ... 73
9.2 Wakeup sequence .. 73

10 Configuration specification ... 74

Specification of CAN Driver
AUTOSAR Release 4.2.2

8 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10.1 How to read this chapter .. 74

10.2 Containers and configuration parameters .. 74
10.2.1 Variants ... 74
10.2.2 Can ... 82
10.2.3 CanGeneral ... 82
10.2.4 CanController .. 86

10.2.5 CanControllerBaudrateConfig ... 89
10.2.6 CanControllerFdBaudrateConfig ... 91
10.2.7 CanHardwareObject .. 93
10.2.8 CanHwFilter .. 97
10.2.9 CanConfigSet .. 97

10.2.10 CanMainFunctionRWPeriods .. 98

10.2.11 CanIcom .. 98

10.2.12 CanIcomConfig .. 99
10.2.13 CanIcomGeneral ... 99
10.2.14 CanIcomRxMessage ... 100
10.2.15 CanIcomRxMessageSignalConfig ... 102

10.2.16 CanIcomWakeupCauses ... 104

11 Not applicable requirements .. 106

Specification of CAN Driver
AUTOSAR Release 4.2.2

9 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Driver (called “Can module” in this
document).
The Can module is part of the lowest layer, performs the hardware access and offers
a hardware independent API to the upper layer.
The only upper layer that has access to the Can module is the CanIf module (see
also SRS_SPAL_12092).
The Can module provides services for initiating transmissions and calls the callback
functions of the CanIf module for notifying events, independently from the hardware.
Furthermore, it provides services to control the behavior and state of the CAN
controllers that are belonging to the same CAN Hardware Unit.
Several CAN controllers can be controlled by a single Can module as long as they
belong to the same CAN Hardware Unit.
For a closer description of CAN controller and CAN Hardware Unit see chapter
Acronyms and abbreviations and a diagram in [5].

Specification of CAN Driver
AUTOSAR Release 4.2.2

10 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

CAN controller A CAN controller serves exactly one physical channel.

CAN Hardware
Unit

A CAN Hardware Unit may consists of one or multiple CAN controllers of
the same type and one or multiple CAN RAM areas. The CAN Hardware
Unit is either on-chip, or an external device. The CAN Hardware Unit is
represented by one CAN driver.

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, DLC and Data
(SDU). (see [19])

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-
PDU. (see [19])

DLC Data Length Code (part of L-PDU that describes the SDU length)

Hardware Object A CAN hardware object is defined as a PDU buffer inside the CAN RAM
of the CAN hardware unit / CAN controller. A Hardware Object is defined
as L-PDU buffer inside the CAN RAM of the CAN Hardware Unit.

Hardware
Receive Handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN Driver. Each HRH typically represents just one hardware object. The
HRH can be used to optimize software filtering.

Hardware
Transmit Handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN Driver. Each HTH typically represents just one or multiple hardware
objects that are configured as hardware transmit buffer pool.

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a
pending low-priority L-PDU in the same transmit hardware object.

ISR Interrupt Service Routine

L-PDU Handle

The L-PDU handle is defined and placed inside the CanIf module layer.
Typically each handle represents an L-PDU, which is a constant structure
with information for Tx/Rx processing.

MCAL Microcontroller Abstraction Layer

Outer Priority
Inversion

A time gap occurs between two consecutive transmit L-PDUs.
In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the lower
priority L-PDU already won the arbitration.

Physical Channel

A physical channel represents an interface from a CAN controller to the
CAN Network. Different physical channels of the CAN hardware unit may
access different networks.

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The
lower the numerical value of the identifier, the higher the priority.

SFR Special Function Register. Hardware register that controls the controller
behavior.

SPAL Standard Peripheral Abstraction Layer

ICOM Intelligent Communication Controller

Specification of CAN Driver
AUTOSAR Release 4.2.2

11 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

2.1 Priority Inversion

“If only a single transmit buffer is used inner priority inversion may occur. Because of
low priority a message stored in the buffer waits until the ”traffic on the bus calms
down”. During the waiting time this message could prevent a message of higher
priority generated by the same microcontroller from being transmitted over the bus.”1

1
 Picture and text by CiA (CAN in Automation)

Specification of CAN Driver
AUTOSAR Release 4.2.2

12 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

“The problem of outer priority inversion may occur in some CAN implementations. Let
us assume that a CAN node wishes to transmit a package of consecutive messages
with high priority, which are stored in different message buffers. If the interframe
space between these messages on the CAN network is longer than the minimum
space defined by the CAN standard, a second node is able to start the transmission
of a lower priority message. The minimum interframe space is determined by the
Intermission field, which consists of 3 recessive bits. A message, pending during the
transmission of another message, is started during the Bus Idle period, at the earliest
in the bit following the Intermission field. The exception is that a node with a waiting
transmission message will interpret a dominant bit at the third bit of Intermission as
Start-of-Frame bit and starts transmission with the first identifier bit without first
transmitting an SOF bit. The internal processing time of a CAN module has to be
short enough to send out consecutive messages with the minimum interframe space
to avoid the outer priority inversion under all the scenarios mentioned.”2

2
 Text and image by CiA (CAN in Automation)

Specification of CAN Driver
AUTOSAR Release 4.2.2

13 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

2.2 CAN Hardware Unit

The CAN Hardware Unit combines one or several CAN controllers, which may be
located on-chip or as external standalone devices of the same type, with common or
separate Hardware Objects.
Following figure shows a CAN Hardware Unit consisting of two CAN controllers
connected to two Physical Channels:

Message Object
Mailbox A

CAN
Transceiver

A

Tx A

Rx A

CAN Controller B

Tx B

Rx B

CAN Controllers with Mailboxes CAN Hardware Unit

CAN
Transceiver

B
Message Object

Mailbox B

CAN
Bus A

CAN
Bus B

CAN Controller A

Physical Channel A

Physical Channel B

Specification of CAN Driver
AUTOSAR Release 4.2.2

14 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture..pdf

[2] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[3] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[4] Requirements on CAN
AUTOSAR_SRS_CAN.pdf

[5] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf

[6] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer.pdf

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager.pdf

[8] Specification of MCU Driver
AUTOSAR_SWS_MCUDriver.pdf

[9] Specification of Operating System
 AUTOSAR_SWS_OS.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Specification of C Implementation Rules

AUTOSAR_TR_CImplementationRules.pdf

[12] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.doc.pdf

[13] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[14] Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

[15] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

Specification of CAN Driver
AUTOSAR Release 4.2.2

15 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[16] List of Basis Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[17] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

[18] ISO11898 – Road vehicles - Controller area network (CAN)

[19] ISO-IEC 7498-1 – OSI Basic Reference Model

[20] HIS – Joint Subset of the MISRA C Guidelines

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [17] (SWS
BSW General), which is also valid for CAN Driver.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for CAN Driver.

Specification of CAN Driver
AUTOSAR Release 4.2.2

16 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

A CAN controller always corresponds to one physical channel. It is allowed to
connect physical channels on bus side. Regardless the CanIf module will treat the
concerned CAN controllers separately.
A few CAN hardware units support the possibility to combine several CAN controllers
by using the CAN RAM, to extend the number of message objects for one CAN
controller. These combined CAN controller are handled as one controller by the Can
module.
The Can module does not support CAN remote frames.

[SWS_Can_00237] ⌈ The Can module shall not transmit messages triggered by

remote transmission requests.⌋ (SRS_Can_01147)

[SWS_Can_00236] ⌈ The Can module shall initialize the CAN HW to ignore any

remote transmission requests.⌋ (SRS_Can_01147)

4.2 Applicability to car domains

The Can module can be used for any application, where the CAN protocol is used.

Specification of CAN Driver
AUTOSAR Release 4.2.2

17 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

5 Dependencies to other modules

5.1 Static Configuration

The configuration elements described in chapter 10 can be referenced by other BSW
modules for their configuration.

5.2 Driver Services

[SWS_Can_00238] ⌈ If the CAN controller is on-chip, the Can module shall not use

any service of other drivers.⌋ (SRS_BSW_00005)

[SWS_Can_00239] ⌈ The function Can_Init shall initialize all on-chip hardware

resources that are used by the CAN controller. The only exception to this is the digital
I/O pin configuration (of pins used by CAN), which is done by the port

driver.⌋ (SRS_BSW_00377)

[SWS_Can_00240] ⌈ The Mcu module (SPAL see [8]) shall configure register

settings that are ‘shared’ with other modules.⌋ ()

Implementation hint: The Mcu module shall be initialized before initializing the Can
module.

[SWS_Can_00242] ⌈ If an off-chip CAN controller is used3, the Can module shall

use services of other MCAL drivers (e.g. SPI).⌋ (SRS_BSW_00005)

Implementation hint: If the Can module uses services of other MCAL drivers (e.g.
SPI), it must be ensured that these drivers are up and running before initializing the
Can module.
The sequence of initialization of different drivers is partly specified in [7].

[SWS_Can_00244] ⌈ The Can module shall use the synchronous APIs of the

underlying MCAL drivers and shall not provide callback functions that can be called

by the MCAL drivers.⌋ ()

Thus the type of connection between µC and CAN Hardware Unit has only impact on
implementation and not on the API.

5.3 System Services

[SWS_Can_00280] ⌈ In special hardware cases, the Can module shall poll for

events of the hardware.⌋ ()

[SWS_Can_00281] ⌈ The Can module shall use the OsCounter provided by the

system service for timeout detection in case the hardware does not react in the

expected time (hardware malfunction) to prevent endless loops.⌋ ()

Implementation hint: The blocking time of the Can module function that is waiting for
hardware reaction shall be shorter than the CAN main function (i.e.
Can_MainFunction_Read) trigger period, because the CAN main functions can’t be
used for that purpose.

3
 In this case the CAN driver is not any more part of the µC abstraction layer but put part of the ECU

abstraction layer. Therefore it is (theoretically) allowed to use any µC abstraction layer driver it needs.

Specification of CAN Driver
AUTOSAR Release 4.2.2

18 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

5.4 Can module Users

[SWS_Can_00058] ⌈ The Can module interacts among other modules (eg.

Diagnostic Event Manager (DEM), Default Error Tracer (DET), Ecu State Manager
(ECUM)) with the CanIf module in a direct way. This document never specifies the
actual origin of a request or the actual destination of a notification. The driver only

sees the CanIf module as origin and destination.⌋ (SRS_SPAL_12092)

Specification of CAN Driver
AUTOSAR Release 4.2.2

19 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

5.5 File structure

5.5.1 Header file structure

[SWS_Can_00034] ⌈

Figure 5-1: File structure for the Can module⌋ (SRS_BSW_00381, SRS_BSW_00412,

SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00435, SRS_BSW_00436,
SRS_BSW_00348, SRS_BSW_00301)

[SWS_Can_00435] ⌈ The Can.h file shall include Can_GeneralTypes.h.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

20 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00436] ⌈ Can_GeneralTypes.h shall contain all types and constants that

are shared among the AUTOSAR CAN modules Can, CanIf and CanTrcv.⌋ ()

[SWS_Can_00388] ⌈ The header file Can.h shall include the header file

ComStack_Types.h.⌋ ()

[SWS_Can_00035] ⌈

The Can module does not provide callback functions (no Can_Cbk.h, see also

SWS_Can_00244) ⌋ ()

[SWS_Can_00390] ⌈ The Can module shall include the header file EcuM_Cbk.h, in

which the callback functions called by the Can module at the Ecu State Manager

module are declared.⌋ ()

[SWS_Can_00391] ⌈ Can module implementations for off-chip CAN controllers shall

include the header file Spi.h. By this inclusion, the APIs to access an external CAN

controller by the SPI module [12] are included.⌋ ()

[SWS_Can_00397] ⌈ The Can module shall include the header file Os.h file. By this

inclusion, the API to read a OsCounter value (GetCounterValue) provided by the

system service shall be included.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

21 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_Can_00035

- - SWS_Can_00056

- - SWS_Can_00109

- - SWS_Can_00174

- - SWS_Can_00177

- - SWS_Can_00178

- - SWS_Can_00179

- - SWS_Can_00180

- - SWS_Can_00181

- - SWS_Can_00183

- - SWS_Can_00184

- - SWS_Can_00185

- - SWS_Can_00186

- - SWS_Can_00196

- - SWS_Can_00197

- - SWS_Can_00198

- - SWS_Can_00199

- - SWS_Can_00200

- - SWS_Can_00202

- - SWS_Can_00204

- - SWS_Can_00205

- - SWS_Can_00206

- - SWS_Can_00208

- - SWS_Can_00209

- - SWS_Can_00210

- - SWS_Can_00216

- - SWS_Can_00217

- - SWS_CAN_00219

- - SWS_Can_00220

- - SWS_Can_00221

- - SWS_Can_00222

- - SWS_Can_00224

- - SWS_Can_00225

- - SWS_Can_00226

- - SWS_Can_00227

- - SWS_Can_00228

Specification of CAN Driver
AUTOSAR Release 4.2.2

22 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

- - SWS_Can_00230

- - SWS_Can_00240

- - SWS_Can_00244

- - SWS_Can_00255

- - SWS_Can_00256

- - SWS_Can_00258

- - SWS_Can_00259

- - SWS_Can_00260

- - SWS_Can_00261

- - SWS_Can_00262

- - SWS_Can_00263

- - SWS_Can_00264

- - SWS_Can_00265

- - SWS_Can_00266

- - SWS_Can_00267

- - SWS_Can_00268

- - SWS_Can_00269

- - SWS_Can_00270

- - SWS_Can_00275

- - SWS_Can_00276

- - SWS_Can_00280

- - SWS_Can_00281

- - SWS_Can_00282

- - SWS_Can_00284

- - SWS_Can_00290

- - SWS_Can_00294

- - SWS_Can_00299

- - SWS_Can_00300

- - SWS_Can_00360

- - SWS_Can_00361

- - SWS_Can_00362

- - SWS_Can_00363

- - SWS_Can_00368

- - SWS_Can_00369

- - SWS_Can_00370

- - SWS_Can_00373

- - SWS_Can_00379

- - SWS_Can_00384

- - SWS_Can_00385

Specification of CAN Driver
AUTOSAR Release 4.2.2

23 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

- - SWS_Can_00386

- - SWS_Can_00388

- - SWS_Can_00390

- - SWS_Can_00391

- - SWS_Can_00395

- - SWS_Can_00397

- - SWS_Can_00398

- - SWS_Can_00404

- - SWS_Can_00405

- - SWS_Can_00407

- - SWS_Can_00408

- - SWS_Can_00409

- - SWS_Can_00410

- - SWS_Can_00411

- - SWS_Can_00412

- - SWS_Can_00413

- - SWS_Can_00415

- - SWS_Can_00416

- - SWS_Can_00417

- - SWS_Can_00419

- - SWS_Can_00420

- - SWS_Can_00422

- - SWS_Can_00423

- - SWS_Can_00425

- - SWS_Can_00426

- - SWS_Can_00427

- - SWS_Can_00429

- - SWS_Can_00435

- - SWS_Can_00436

- - SWS_Can_00439

- - SWS_Can_00440

- - SWS_Can_00441

- - SWS_Can_00442

- - SWS_Can_00443

- - SWS_Can_00444

- - SWS_Can_00445

- - SWS_Can_00446

- - SWS_Can_00447

- - SWS_Can_00449

Specification of CAN Driver
AUTOSAR Release 4.2.2

24 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

- - SWS_Can_00450

- - SWS_Can_00451

- - SWS_Can_00452

- - SWS_Can_00453

- - SWS_Can_00454

- - SWS_Can_00455

- - SWS_Can_00456

- - SWS_Can_00457

- - SWS_Can_00458

- - SWS_Can_00459

- - SWS_Can_00460

- - SWS_Can_00461

- - SWS_CAN_00462

- - SWS_CAN_00464

- - SWS_CAN_00467

- - SWS_CAN_00468

- - SWS_CAN_00470

- - SWS_CAN_00471

- - SWS_CAN_00472

- - SWS_CAN_00474

- - SWS_CAN_00475

- - SWS_CAN_00477

- - SWS_CAN_00478

- - SWS_CAN_00479

- - SWS_CAN_00480

- - SWS_CAN_00481

- - SWS_CAN_00485

- - SWS_CAN_00486

- - SWS_CAN_00487

- - SWS_CAN_00489

- - SWS_CAN_00490

- - SWS_CAN_00491

- - SWS_CAN_00492

- - SWS_CAN_00493

- - SWS_CAN_00494

- - SWS_CAN_00495

- - SWS_CAN_00496

- - SWS_CAN_00497

- - SWS_CAN_00498

Specification of CAN Driver
AUTOSAR Release 4.2.2

25 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

- - SWS_CAN_00499

- - SWS_CAN_00500

- - SWS_CAN_00503

- - SWS_CAN_00504

- - SWS_CAN_00505

- - SWS_CAN_00506

BSW00443 - SWS_Can_00999

BSW00444 - SWS_Can_00999

BSW00445 - SWS_Can_00999

BSW00446 - SWS_Can_00999

SRS_BSW_00005 Modules of the ÂµC Abstraction Layer (MCAL)
may not have hard coded horizontal interfaces

SWS_Can_00238,
SWS_Can_00242

SRS_BSW_00007 All Basic SW Modules written in C language
shall conform to the MISRA C 2004 Standard.

SWS_Can_00079

SRS_BSW_00101 The Basic Software Module shall be able to
initialize variables and hardware in a separate
initialization function

SWS_Can_00250

SRS_BSW_00158 All modules of the AUTOSAR Basic Software
shall strictly separate configuration from
implementation

SWS_Can_00034

SRS_BSW_00159 All modules of the AUTOSAR Basic Software
shall support a tool based configuration

SWS_Can_00022

SRS_BSW_00162 The AUTOSAR Basic Software shall provide a
hardware abstraction layer

SWS_Can_00999

SRS_BSW_00164 The Implementation of interrupt service routines
shall be done by the Operating System,
complex drivers or modules

SWS_Can_00033

SRS_BSW_00167 All AUTOSAR Basic Software Modules shall
provide configuration rules and constraints to
enable plausibility checks

SWS_Can_00024

SRS_BSW_00168 SW components shall be tested by a function
defined in a common API in the Basis-SW

SWS_Can_00999

SRS_BSW_00170 The AUTOSAR SW Components shall provide
information about their dependency from faults,
signal qualities, driver demands

SWS_Can_00999

SRS_BSW_00301 All AUTOSAR Basic Software Modules shall
only import the necessary information

SWS_Can_00034

SRS_BSW_00306 AUTOSAR Basic Software Modules shall be
compiler and platform independent

SWS_Can_00079

SRS_BSW_00307 Global variables naming convention SWS_Can_00999

SRS_BSW_00308 AUTOSAR Basic Software Modules shall not
define global data in their header files, but in
the C file

SWS_Can_00079

SRS_BSW_00309 All AUTOSAR Basic Software Modules shall
indicate all global data with read-only purposes
by explicitly assigning the const keyword

SWS_Can_00079

Specification of CAN Driver
AUTOSAR Release 4.2.2

26 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SRS_BSW_00312 Shared code shall be reentrant SWS_Can_00214,
SWS_Can_00231,
SWS_Can_00232,
SWS_Can_00233

SRS_BSW_00323 All AUTOSAR Basic Software Modules shall
check passed API parameters for validity

SWS_Can_00026

SRS_BSW_00325 The runtime of interrupt service routines and
functions that are running in interrupt context
shall be kept short

SWS_Can_00999

SRS_BSW_00326 - SWS_Can_00999

SRS_BSW_00330 It shall be allowed to use macros instead of
functions where source code is used and
runtime is critical

SWS_Can_00079

SRS_BSW_00331 All Basic Software Modules shall strictly
separate error and status information

SWS_Can_00039,
SWS_Can_00104

SRS_BSW_00336 Basic SW module shall be able to shutdown SWS_Can_00999

SRS_BSW_00337 Classification of development errors SWS_Can_00026,
SWS_Can_00104

SRS_BSW_00342 It shall be possible to create an AUTOSAR
ECU out of modules provided as source code
and modules provided as object code, even
mixed

SWS_Can_00999

SRS_BSW_00344 BSW Modules shall support link-time
configuration

SWS_Can_00021

SRS_BSW_00346 All AUTOSAR Basic Software Modules shall
provide at least a basic set of module files

SWS_Can_00034

SRS_BSW_00347 A Naming seperation of different instances of
BSW drivers shall be in place

SWS_Can_00077

SRS_BSW_00348 All AUTOSAR standard types and constants
shall be placed and organized in a standard
type header file

SWS_Can_00034

SRS_BSW_00353 All integer type definitions of target and
compiler specific scope shall be placed and
organized in a single type header

SWS_Can_00999

SRS_BSW_00358 The return type of init() functions implemented
by AUTOSAR Basic Software Modules shall be
void

SWS_Can_00223

SRS_BSW_00359 All AUTOSAR Basic Software Modules callback
functions shall avoid return types other than
void if possible

SWS_Can_00999

SRS_BSW_00361 All mappings of not standardized keywords of
compiler specific scope shall be placed and
organized in a compiler specific type and
keyword header

SWS_Can_00999

SRS_BSW_00369 All AUTOSAR Basic Software Modules shall
not return specific development error codes via
the API

SWS_Can_00089

SRS_BSW_00373 The main processing function of each
AUTOSAR Basic Software Module shall be
named according the defined convention

SWS_Can_00031

Specification of CAN Driver
AUTOSAR Release 4.2.2

27 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SRS_BSW_00375 Basic Software Modules shall report wake-up
reasons

SWS_Can_00271,
SWS_Can_00364

SRS_BSW_00376 - SWS_Can_00031

SRS_BSW_00377 A Basic Software Module can return a module
specific types

SWS_Can_00239

SRS_BSW_00378 AUTOSAR shall provide a boolean type SWS_Can_00999

SRS_BSW_00381 The pre-compile time parameters shall be
placed into a separate configuration header file

SWS_Can_00034

SRS_BSW_00383 The Basic Software Module specifications shall
specify which other configuration files from
other modules they use at least in the
description

SWS_Can_00999

SRS_BSW_00385 List possible error notifications SWS_Can_00104

SRS_BSW_00386 The BSW shall specify the configuration for
detecting an error

SWS_Can_00089

SRS_BSW_00387 - SWS_Can_00234

SRS_BSW_00395 The Basic Software Module specifications shall
list all configuration parameter dependencies

SWS_Can_00999

SRS_BSW_00397 The configuration parameters in pre-compile
time are fixed before compilation starts

SWS_Can_00999

SRS_BSW_00398 The link-time configuration is achieved on
object code basis in the stage after compiling
and before linking

SWS_Can_00999

SRS_BSW_00399 Parameter-sets shall be located in a separate
segment and shall be loaded after the code

SWS_Can_00999

SRS_BSW_00400 Parameter shall be selected from multiple sets
of parameters after code has been loaded and
started

SWS_Can_00999

SRS_BSW_00404 BSW Modules shall support post-build
configuration

SWS_Can_00021

SRS_BSW_00405 BSW Modules shall support multiple
configuration sets

SWS_Can_00021

SRS_BSW_00406 A static status variable denoting if a BSW
module is initialized shall be initialized with
value 0 before any APIs of the BSW module is
called

SWS_Can_00103

SRS_BSW_00409 All production code error ID symbols are
defined by the Dem module and shall be
retrieved by the other BSW modules from Dem
configuration

SWS_Can_00999

SRS_BSW_00412 References to c-configuration parameters shall
be placed into a separate h-file

SWS_Can_00034

SRS_BSW_00413 An index-based accessing of the instances of
BSW modules shall be done

SWS_Can_00999

SRS_BSW_00414 Init functions shall have a pointer to a
configuration structure as single parameter

SWS_Can_00223

SRS_BSW_00415 Interfaces which are provided exclusively for
one module shall be separated into a dedicated

SWS_Can_00999

Specification of CAN Driver
AUTOSAR Release 4.2.2

28 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

header file

SRS_BSW_00417 Software which is not part of the SW-C shall
report error events only after the DEM is fully
operational.

SWS_Can_00999

SRS_BSW_00422 Pre-de-bouncing of error status information is
done within the DEM

SWS_Can_00999

SRS_BSW_00423 BSW modules with AUTOSAR interfaces shall
be describable with the means of the SW-C
Template

SWS_Can_00999

SRS_BSW_00424 BSW module main processing functions shall
not be allowed to enter a wait state

SWS_Can_00999

SRS_BSW_00425 The BSW module description template shall
provide means to model the defined trigger
conditions of schedulable objects

SWS_Can_00999

SRS_BSW_00426 BSW Modules shall ensure data consistency of
data which is shared between BSW modules

SWS_Can_00999

SRS_BSW_00427 ISR functions shall be defined and documented
in the BSW module description template

SWS_Can_00999

SRS_BSW_00428 A BSW module shall state if its main processing
function(s) has to be executed in a specific
order or sequence

SWS_Can_00110

SRS_BSW_00429 BSW modules shall be only allowed to use OS
objects and/or related OS services

SWS_Can_00999

SRS_BSW_00432 Modules should have separate main processing
functions for read/receive and write/transmit
data path

SWS_Can_00031,
SWS_Can_00108,
SWS_Can_00112

SRS_BSW_00433 Main processing functions are only allowed to
be called from task bodies provided by the
BSW Scheduler

SWS_Can_00999

SRS_BSW_00435 - SWS_Can_00034

SRS_BSW_00436 - SWS_Can_00034

SRS_BSW_00438 Configuration data shall be defined in a
structure

SWS_Can_00291

SRS_BSW_00439 Enable BSW modules to handle interrupts SWS_Can_00999

SRS_BSW_00440 The callback function invocation by the BSW
module shall follow the signature provided by
RTE to invoke servers via Rte_Call API

SWS_Can_00999

SRS_BSW_00447 Standardizing Include file structure of BSW
Modules Implementing Autosar Service

SWS_Can_00999

SRS_BSW_00449 BSW Service APIs used by Autosar Application
Software shall return a Std_ReturnType

SWS_Can_00999

SRS_BSW_00453 BSW Modules shall be harmonized SWS_Can_00999

SRS_BSW_00455 - SWS_Can_00999

SRS_Can_01005 The CAN Interface shall perform a check for
correct DLC of received PDUs

SWS_Can_00218

SRS_Can_01041 The CAN Driver shall implement an interface
for initialization

SWS_Can_00245,
SWS_Can_00246

Specification of CAN Driver
AUTOSAR Release 4.2.2

29 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SRS_Can_01042 The CAN Driver shall support dynamic
selection of configuration sets

SWS_Can_00062

SRS_Can_01043 The CAN Driver shall provide a service to
enable/disable interrupts of the CAN Controller.

SWS_Can_00049,
SWS_Can_00050

SRS_Can_01045 The CAN Driver shall offer a reception
indication service.

SWS_Can_00279,
SWS_Can_00396

SRS_Can_01049 The CAN Driver shall provide a dynamic
transmission request service

SWS_Can_00212,
SWS_Can_00213,
SWS_Can_00214

SRS_Can_01051 The CAN Driver shall provide a transmission
confirmation service

SWS_Can_00016

SRS_Can_01053 The CAN Driver shall provide a service to
change the CAN controller mode.

SWS_Can_00017

SRS_Can_01054 The CAN Driver shall provide a notification for
controller wake-up events

SWS_Can_00235,
SWS_Can_00271,
SWS_Can_00364

SRS_Can_01055 The CAN Driver shall provide a notification for
bus-off state

SWS_Can_00020,
SWS_Can_00234

SRS_Can_01059 The CAN Driver shall guarantee data
consistency of received L-PDUs

SWS_Can_00011,
SWS_Can_00012

SRS_Can_01060 The CAN driver shall not recover from bus-off
automatically

SWS_Can_00272,
SWS_Can_00273,
SWS_Can_00274

SRS_Can_01062 Each event for each CAN Controller shall be
configurable to be detected by polling or by an
interrupt

SWS_Can_00007

SRS_Can_01122 The CAN driver shall support the situation
where a wakeup by bus occurs during the same
time the transition to standby/sleep is in
progress

SWS_Can_00048

SRS_Can_01125 The CAN stack shall ensure not to lose
messages in receive direction

SWS_Can_00999

SRS_Can_01126 The CAN stack shall be able to produce 100%
bus load

SWS_Can_00999

SRS_Can_01132 The CAN driver shall be able to detect
notification events message object specific by
CAN-Interrupt and polling

SWS_Can_00099

SRS_Can_01134 The CAN Driver shall support multiplexed
transmission

SWS_Can_00277,
SWS_Can_00401,
SWS_Can_00402,
SWS_Can_00403

SRS_Can_01135 It shall be possible to configure one or several
TX Hardware Objects

SWS_Can_00100

SRS_Can_01139 The CAN Interface and Driver shall offer a CAN
Controller specific interface for initialization

SWS_Can_00062

SRS_Can_01147 The CAN Driver shall not support remote
frames

SWS_Can_00236,
SWS_Can_00237

SRS_Can_01160 Padding of bytes due to discrete CAN FD DLC SWS_CAN_00502

SRS_Can_01162 The CAN Interface shall support classic CAN SWS_CAN_00501

Specification of CAN Driver
AUTOSAR Release 4.2.2

30 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

and CAN FD frames

SRS_SPAL_00157 All drivers and handlers of the AUTOSAR Basic
Software shall implement notification
mechanisms of drivers and handlers

SWS_Can_00026,
SWS_Can_00031,
SWS_Can_00108,
SWS_Can_00112

SRS_SPAL_12056 All driver modules shall allow the static
configuration of notification mechanism

SWS_Can_00235

SRS_SPAL_12057 All driver modules shall implement an interface
for initialization

SWS_Can_00245,
SWS_Can_00246

SRS_SPAL_12063 All driver modules shall only support raw value
mode

SWS_Can_00059,
SWS_Can_00060

SRS_SPAL_12064 All driver modules shall raise an error if the
change of the operation mode leads to
degradation of running operations

SWS_Can_00999

SRS_SPAL_12067 All driver modules shall set their wake-up
conditions depending on the selected operation
mode

SWS_Can_00257

SRS_SPAL_12068 The modules of the MCAL shall be initialized in
a defined sequence

SWS_Can_00999

SRS_SPAL_12069 All drivers of the SPAL that wake up from a
wake-up interrupt shall report the wake-up
reason

SWS_Can_00271,
SWS_Can_00364

SRS_SPAL_12075 All drivers with random streaming capabilities
shall use application buffers

SWS_Can_00011

SRS_SPAL_12077 All drivers shall provide a non blocking
implementation

SWS_Can_00372

SRS_SPAL_12092 The driver's API shall be accessed by its
handler or manager

SWS_Can_00058

SRS_SPAL_12125 All driver modules shall only initialize the
configured resources

SWS_Can_00053

SRS_SPAL_12129 The ISRs shall be responsible for resetting the
interrupt flags and calling the according
notification function

SWS_Can_00033

SRS_SPAL_12163 All driver modules shall implement an interface
for de-initialization

SWS_Can_00999

SRS_SPAL_12169 All driver modules that provide different
operation modes shall provide a service for
mode selection

SWS_Can_00017

SRS_SPAL_12263 The implementation of all driver modules shall
allow the configuration of specific module
parameter types at link time

SWS_Can_00021

SRS_SPAL_12265 Configuration data shall be kept constant SWS_Can_00021

SRS_SPAL_12448 All driver modules shall have a specific
behavior after a development error detection

SWS_Can_00089,
SWS_Can_00091

SRS_SPAL_12462 The register initialization settings shall be
published

SWS_Can_00999

SRS_SPAL_12463 The register initialization settings shall be
combined and forwarded

SWS_Can_00024

Specification of CAN Driver
AUTOSAR Release 4.2.2

31 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Specification of CAN Driver
AUTOSAR Release 4.2.2

32 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7 Functional specification

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer
inside the CAN controller hardware.
See chapter 7.5 for closer description of L-PDU transmission.
On L-PDU reception, the Can module calls the RX indication callback function with
ID, DLC and pointer to L-SDU as parameter.
See chapter 7.6 for closer description of L-PDU reception.
The Can module provides an interface that serves as periodical processing function,
and which must be called by the Basic Software Scheduler module periodically.
Furthermore, the Can module provides services to control the state of the CAN
controllers. Bus-off and Wake-up events are notified by means of callback functions.
The Can module is a Basic Software Module that accesses hardware resources.
Therefore, it is designed to fulfill the requirements for Basic Software Modules
specified in AUTOSAR_SRS_SPAL (see [3]).

[SWS_Can_00033] ⌈ The Can module shall implement the interrupt service routines

for all CAN Hardware Unit interrupts that are needed. ⌋ (SRS_BSW_00164,

SRS_SPAL_12129)

[SWS_Can_00419] ⌈ The Can module shall disable all unused interrupts in the CAN

controller.⌋ ()

[SWS_Can_00420] ⌈ The Can module shall reset the interrupt flag at the end of the

ISR (if not done automatically by hardware). ⌋ ()

Implementation hint: The Can module shall not set the configuration (i.e. priority) of
the vector table entry.

[SWS_Can_00079] ⌈ The Can module shall fulfill all design and implementation

guidelines described in [11].⌋ (SRS_BSW_00007, SRS_BSW_00306,

SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00330)

7.1 Driver scope

One Can module provides access to one CAN Hardware Unit that may consist of
several CAN controllers.

[SWS_Can_00077] ⌈ For CAN Hardware Units of different type, different Can

modules shall be implemented. ⌋ (SRS_BSW_00347)

[SWS_Can_00284] ⌈ In case several CAN Hardware Units (of same or different

vendor) are implemented in one ECU the function names, and global variables of the
Can modules shall be implemented such that no two functions with the same name

are generated.⌋ ()

The naming convention is as follows:
<Can module name>_<vendorID>_<Vendor specific API name><driver

abbreviation>()

SRS_BSW_00347 specifies the naming convention.

[SWS_Can_00385] ⌈ The naming conventions shall be used only in that case, if

multiple different CAN controller types on one ECU have to be supported. ⌋ ()

[SWS_Can_00386] ⌈ If only one controller type is used, the original naming

conventions without any <driver abbreviation> extensions are sufficient.⌋ ()

See [5] for description how several Can modules are handled by the CanIf module.

Specification of CAN Driver
AUTOSAR Release 4.2.2

33 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.2 Driver State Machine

The Can module has a very simple state machine, with the two states CAN_UNINIT
and CAN_READY. Figure 7.1 shows the state machine.

[SWS_Can_00103] ⌈ After power-up/reset, the Can module shall be in the state

CAN_UNINIT. ⌋ (SRS_BSW_00406)

Figure 7-1

[SWS_Can_00246] ⌈ The function Can_Init shall change the module state to

CAN_READY, after initializing all controllers inside the HW

Unit.⌋ (SRS_SPAL_12057, SRS_Can_01041)

[SWS_Can_00245] ⌈ The function Can_Init shall initialize all CAN controllers

according to their configuration.⌋ (SRS_SPAL_12057, SRS_Can_01041)

Each CAN controller must then be started separately by calling the function
Can_SetControllerMode(CAN_T_START).
Implementation hint:
Hardware register settings that have impact on all CAN controllers inside the HW
Unit can only be set in the function Can_Init.
Implementation hint:
The ECU State Manager module shall call Can_Init at most once during runtime.

7.3 CAN Controller State Machine

Each CAN controller has complex state machines implemented in hardware. For
simplification, the number of states is reduced to the following four basic states in this
description: UNINIT, STOPPED, STARTED and SLEEP.
For each CAN controller a corresponding ‘software’ state machine is implemented in
the CanIf module [5] with the following states: CANIF_CS_UNINIT,
CANIF_CS_STOPPED, CANIF_CS_STARTED and CANIF_CS_SLEEP. [5] shows
the implementation of the software state machine. Any CAN hardware access is
encapsulated by functions of the Can module, but the Can module does not
memorize the state changes.
During a transition phase, the software controller state inside the CanIf module may
differ from the hardware state of the CAN controller.

Specification of CAN Driver
AUTOSAR Release 4.2.2

34 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

The Can module offers the services Can_Init, Can_SetBaudrate and
Can_SetControllerMode. These services perform the necessary register settings that
cause the required change of the hardware CAN controller state.
There are two possibilities for triggering state changes by external events:

 Bus-off event
 HW wakeup event

These events are indicated either by an interrupt or by a status bit that is polled in the
Can_MainFunction_BusOff or Can_MainFunction_Wakeup.
The Can module does the register settings that are necessary to fulfill the required
behavior (i.e. no hardware recovery in case of bus off).
Then it notifies the CanIf module with the corresponding callback function. The
software state is then changed inside this callback function.
The Can module does not check for validity of state changes. It is the task of upper
layer modules to trigger only transitions that are allowed in the current state. In case
default errors are enabled, the Can module checks the transition. In case of wrong
implementation by the upper layer module, the Can module raises the Default error
CAN_E_TRANSITION.
The Can module does not check the actual state before it performs Can_Write or
raises callbacks.
During a transition phase - where the software controller state inside the CanIf
module differs from the hardware state of the CAN controller – transmit might fail or
be delayed because the hardware CAN controller is not yet participating on the bus.
The Can module does not provide a notification for this case.

7.3.1 CAN Controller State Description

This chapter describes the required hardware behavior for the different SW states.
The software state machine itself is implemented and described in the CanIf module.
Please refer to [5] for the state diagram.

CAN controller state UNINIT

The CAN controller is not initialized. All registers belonging to the CAN module are in
reset state, CAN interrupts are disabled. The CAN Controller is not participating on
the CAN bus.

CAN controller state STOPPED

In this state the CAN Controller is initialized but does not participate on the bus. In
addition, error frames and acknowledges must not be sent.
(Example: For many controllers entering an ‘initialization’-mode causes the controller
to be stopped.)

CAN controller state STARTED

Specification of CAN Driver
AUTOSAR Release 4.2.2

35 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

The controller is in a normal operation mode with complete functionality, which
means it participates in the network. For many controllers leaving the ‘initialization’-
mode causes the controller to be started.

CAN controller state SLEEP

The hardware settings only differ from state STOPPED for CAN hardware that
support a sleep mode (wake-up over CAN bus directly supported by CAN hardware).

[SWS_Can_00257] ⌈ When the CAN hardware supports sleep mode and is

triggered to transition into SLEEP state, the Can module shall set the controller to the
SLEEP state from which the hardware can be woken over CAN

Bus.⌋ (SRS_SPAL_12067)

[SWS_Can_00258] ⌈ When the CAN hardware does not support sleep mode and is

triggered to transition into SLEEP state, the Can module shall emulate a logical
SLEEP state from which it returns only, when it is triggered by software to transition

into STOPPED state.⌋ ()

[SWS_Can_00404] ⌈ The CAN hardware shall remain in state STOPPED, while the

logical SLEEP state is active.⌋ ()

7.3.2 CAN Controller State Transitions

A state transition is triggered by software with the function Can_SetControllerMode
with the required transition as parameter. A successful state transition triggered by
software is notified by the callback function (CanIf_ControllerModeIndication). The
monitoring whether the requested state is achieved is part of an upper layer module
and is not part of the Can module.
Some transitions are triggered by events on the bus (hardware). These transitions
cause a notification by means of a callback function (CanIf_ControllerBusOff,
EcuM_CheckWakeup).
Plausibility checks for state transitions are only performed with default error detection
switched on. The behavior for invalid transitions in production code is undefined.
Figure 7-2 shows all valid state transitions.

Specification of CAN Driver
AUTOSAR Release 4.2.2

36 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Figure 7-2

7.3.3 State transition caused by function Can_Init

 UNINIT  STOPPED (for all controllers in HW unit)
 software triggered by the function call Can_Init
 does configuration for all CAN controllers inside HW Unit

All control registers are set according to the static configuration.

[SWS_Can_00259] ⌈ The function Can_Init shall set all CAN controllers in the state

STOPPED.⌋ ()

When the function Can_Init is entered and the Can module is not in state
CAN_UNINIT or the CAN controllers are not in state UNINIT, it shall raise the error
CAN_E_TRANSITION (Compare to SWS_Can_00174 and SWS_Can_00408).

7.3.4 State transition caused by function Can_SetBaudrate

- STOPPED -> STOPPED; SLEEP -> SLEEP; STARTED -> STARTED
- software triggered by the function call Can_SetBaudrate
- changes the CAN controller configuration

CAN controller registers are set according to the static configurations.

[SWS_Can_00256] ⌈ If the call of Can_SetBaudrate() would cause a re-initialization

of the CAN Controller and the CAN Controller is not in state STOPPED, it shall return

E_NOT_OK.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

37 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00260] ⌈ If re-initialization is necessary the function Can_SetBaudrate

shall maintain the CAN controller in the state STOPPED.⌋ ()

[SWS_Can_00422] ⌈ If re-initialization is necessary the function Can_SetBaudrate

shall ensure that any settings that will cause the CAN controller to participate in the

network are not set.⌋ ()

7.3.5 State transition caused by function Can_SetControllerMode

The software can trigger a CAN controller state transition with the function
Can_SetControllerMode. Depending on the CAN hardware, a change of a register
setting to transition to a new CAN controller state may take over only after a delay.
The Can module notifies the upper layer (CanIf_ControllerModeIndication) after a
successful state transition about the new state. The monitoring whether the
requested state is achieved is part of an upper layer module and is not part of the
Can module.

[SWS_Can_00370] ⌈ The function Can_Mainfunction_Mode shall poll a flag of the

CAN status register until the flag signals that the change takes effect and notify the
upper layer with function CanIf_ControllerModeIndication about a successful state
transition referring to the corresponding CAN controller with the abstract CanIf

ControllerId.⌋ ()

[SWS_Can_00398] ⌈ The function Can_SetControllerMode shall use the system

service GetCounterValue for timeout monitoring to avoid blocking functions.⌋ ()

[SWS_Can_00372] ⌈ In case the flag signals that the change takes no effect and the

maximum time CanTimeoutDuration is elapsed, the function

Can_SetControllerMode shall be left and the function Can_Mainfunction_Mode shall

continue to poll the flag.⌋ (SRS_SPAL_12077)

[SWS_Can_00373] ⌈ The function Can_Mainfunction_Mode shall call the function

CanIf_ControllerModeIndication to notify the upper layer about a successful state
transition of the corresponding CAN controller referred by abstract CanIf ControllerId,

in case the state transition was triggered by function Can_SetControllerMode.⌋ ()

State transition caused by function Can_SetControllerMode(CAN_T_START)

 STOPPED  STARTED
 software triggered

[SWS_Can_00261] ⌈ The function Can_SetControllerMode(CAN_T_START) shall

set the hardware registers in a way that makes the CAN controller participating on

the network.⌋ ()

[SWS_Can_00262] ⌈ The function Can_SetControllerMode(CAN_T_START) shall

wait for limited time until the CAN controller is fully operational. Compare to

SWS_Can_00398.⌋ ()

Transmit requests that are initiated before the CAN controller is operational get lost.
The only indicator for operability is the reception of TX confirmations or RX
indications. The sending entities might get a confirmation timeout and need to be
able to cope with that.

Specification of CAN Driver
AUTOSAR Release 4.2.2

38 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00409] ⌈ When the function Can_SetControllerMode(CAN_T_START)

is entered and the CAN controller is not in state STOPPED it shall detect a invalid

state transition (Compare to SWS_Can_00200).⌋ ()

State transition caused by function Can_SetControllerMode(CAN_T_STOP)

 STARTED  STOPPED
 software triggered

[SWS_Can_00263] ⌈ The function Can_SetControllerMode(CAN_T_STOP) shall set

the bits inside the CAN hardware such that the CAN controller stops participating on

the network.⌋ ()

[SWS_Can_00264] ⌈ The function Can_SetControllerMode(CAN_T_STOP) shall

wait for a limited time until the CAN controller is really switched off. Compare to

SWS_Can_00398.⌋ ()

[SWS_Can_00282] ⌈ The function Can_SetControllerMode(CAN_T_STOP) shall

cancel pending messages. ⌋ ()

 [SWS_Can_00410] ⌈ When the function Can_SetControllerMode(CAN_T_STOP) is

entered and the CAN controller is neither in state STARTED nor in state STOPPED,

it shall detect a invalid state transition (Compare to SWS_Can_00200).⌋ ()

State transition caused by function Can_SetControllerMode(CAN_T_SLEEP)

 STOPPED  SLEEP
 software triggered

[SWS_Can_00265] ⌈ The function Can_SetControllerMode(CAN_T_SLEEP) shall

set the controller into sleep mode.⌋ ()

[SWS_Can_00266] ⌈ If the CAN HW does support a sleep mode, the function

Can_SetControllerMode(CAN_T_SLEEP) shall wait for a limited time until the CAN
controller is in SLEEP state and it is assured that the CAN hardware is wake able.

Compare to SWS_Can_00398.⌋ ()

[SWS_Can_00290] ⌈ If the CAN HW does not support a sleep mode, the function

Can_SetControllerMode(CAN_T_SLEEP) shall set the CAN controller to the logical

sleep mode.⌋ ()

[SWS_Can_00405] ⌈ This logical sleep mode shall left only, if function

Can_SetControllerMode(CAN_T_WAKEUP) is called.⌋ ()

[SWS_Can_00411] ⌈ When the function Can_SetControllerMode(CAN_T_SLEEP)

is entered and the CAN controller is neither in state STOPPED nor in state SLEEP, it

shall detect a invalid state transition (Compare to SWS_Can_00200).⌋ ()

State transition caused by function Can_SetControllerMode(CAN_T_WAKEUP)

 SLEEP  STOPPED
 software triggered

[SWS_Can_00267] ⌈ If the CAN HW does not support a sleep mode, the function

Can_SetControllerMode(CAN_T_WAKEUP) shall return from the logical sleep mode,

Specification of CAN Driver
AUTOSAR Release 4.2.2

39 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

but have no effect to the CAN controller state (as the controller is already in stopped

state).⌋ ()

[SWS_Can_00268] ⌈ The function Can_SetControllerMode(CAN_T_WAKEUP) shall

wait for a limited time until the CAN controller is in STOPPED state. Compare to

SWS_Can_00398.⌋ ()

[SWS_Can_00412] ⌈ When the function

Can_SetControllerMode(CAN_T_WAKEUP) is entered and the CAN controller is
neither in state SLEEP nor in state STOPPED, it shall detect a invalid state transition

(Compare to SWS_Can_00200).⌋ ()

7.3.6 State transition caused by Hardware Events

State transition caused by Hardware Wakeup (triggered by wake-up event from
CAN bus)

 SLEEP  STOPPED
 triggered by incoming L-PDUs
 The ECU Statemanager module is notified with the function

EcuM_CheckWakeup

This state transition will only occur when sleep mode is supported by hardware.

[SWS_Can_00270] ⌈ On hardware wakeup (triggered by a wake-up event from CAN

bus), the CAN controller shall transition into the state STOPPED.⌋ ()

[SWS_Can_00271] ⌈ On hardware wakeup (triggered by a wake-up event from CAN

bus), the Can module shall call the function EcuM_CheckWakeup either in interrupt

context or in the context of Can_MainFunction_Wakeup.⌋ (SRS_BSW_00375,

SRS_SPAL_12069, SRS_Can_01054)

[SWS_Can_00269] ⌈ The Can module shall not further process the L-PDU that

caused a wake-up.⌋ ()

[SWS_Can_00048] ⌈ In case of a CAN bus wake-up during sleep transition, the

function Can_SetControllerMode(CAN_T_WAKEUP) shall return

CAN_NOT_OK.⌋ (SRS_Can_01122)

State transition caused by Bus-Off (triggered by state change of CAN
controller)

[SWS_Can_00020] ⌈

 STARTED  STOPPED
 triggered by hardware if the CAN controller reaches bus-off state
 The CanIf module is notified with the function CanIf_ControllerBusOff after

STOPPED state is reached referring to the corresponding CAN controller with

the abstract CanIf ControllerId.⌋ (SRS_Can_01055)

[SWS_Can_00272] ⌈ After bus-off detection, the CAN controller shall transition to

the state STOPPED and the Can module shall ensure that the CAN controller doesn’t

participate on the network anymore. ⌋ (SRS_Can_01060)

[SWS_Can_00273] ⌈ After bus-off detection, the Can module shall cancel still

pending messages. ⌋ (SRS_Can_01060)

Specification of CAN Driver
AUTOSAR Release 4.2.2

40 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00274] ⌈ The Can module shall disable or suppress automatic bus-off

recovery.⌋ (SRS_Can_01060)

7.4 Can module/Controller Initialization

The ECU State Manager module shall initialize the Can module during startup phase
by calling the function Can_Init before using any other functions of the Can module.

[SWS_Can_00250] ⌈ The function Can_Init shall initialize:

 static variables, including flags,
 Common setting for the complete CAN HW unit

 CAN controller specific settings for each CAN controller⌋ (SRS_BSW_00101)

[SWS_Can_00053] ⌈ Can_Init shall not change registers of CAN controller

Hardware resources that are not used. ⌋ (SRS_SPAL_12125)

The Can module shall apply the following rules regarding initialization of controller
registers:

 [SWS_Can_00407] ⌈ If the hardware allows for only one usage of the

register, the Can module implementing that functionality is responsible
initializing the register.

 If the register can affect several hardware modules and if it is an I/O register it
shall be initialized by the PORT driver.

 If the register can affect several hardware modules and if it is not an I/O
register it shall be initialized by the MCU driver.

 One-time writable registers that require initialization directly after reset shall be
initialized by the startup code.

 All other registers shall be initialized by the startup

code.⌋ (SRS_SPAL_12461)

[SWS_Can_00056] ⌈ Post-Build configuration elements that are marked as ‘multiple’

(‘M’ or ‘x’) in chapter 10 can be selected by passing the pointer ‘Config’ to the init

function of the module. ⌋ ()

[SWS_Can_00062] ⌈ If Can_SetBaudrate determines that the aimed configuration

change requires a re-initialization and the CAN Controller is in STOPPED, the
function Can_SetBaudrate shall re-initialize the CAN controller and the controller

specific settings.⌋ (SRS_Can_01139, SRS_Can_01042)

If re-initialization is necessary, the CAN Controller has to be switched to STOPPED
before Can_SetBaudrate() can be executed and the new baud rate configuration can
be applied.

[SWS_Can_00255] ⌈ The function Can_SetBaudrate shall only affect register areas

that contain specific configuration for a single CAN controller. ⌋ ()

[SWS_Can_00021] ⌈ The desired CAN controller configuration can be selected with

the parameter Config. ⌋ (SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405,

SRS_SPAL_12263, SRS_SPAL_12265)

[SWS_Can_00291] ⌈ Config is a pointer into an array of implementation specific

data structure stored in ROM. The different controller configuration sets are located

as data structures in ROM.⌋ (SRS_BSW_00438)

Specification of CAN Driver
AUTOSAR Release 4.2.2

41 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

The possible values for Config are provided by the configuration description (see
chapter 10).
The Can module configuration defines the global CAN HW Unit settings and
references to the default CAN controller configuration sets.

7.5 L-PDU transmission

On L-PDU transmission, the Can module converts the L-PDU contents ID and DLC
to a hardware specific format (if necessary) and triggers the transmission.

[SWS_Can_00059] ⌈ Data mapping by CAN to memory is defined in a way that the

CAN data byte which is sent out first is array element 0, the CAN data byte which is

sent out last is array element 7 or 63 in case of CAN FD.⌋ (SRS_SPAL_12063)

[SWS_Can_00427] ⌈ If the presentation inside the CAN Hardware buffer differs from

AUTOSAR definition, the Can module must provide an adapted SDU-Buffer for the

upper layers.⌋ ()

[SWS_Can_00100] ⌈ Several TX hardware objects with unique HTHs may be

configured. The CanIf module provides the HTH as parameter of the TX request. See

Figure 7-3 for a possible configuration.⌋ (SRS_Can_01135)

Figure 7-3: Example of assignment of HTHs and HRHs to the Hardware Objects. The numbering
of HTHs and HRHs are implementation specific. The chosen numbering is only an example.

[SWS_Can_00276] ⌈ The function Can_Write shall store the swPduHandle that is

given inside the parameter PduInfo until the Can module calls the
CanIf_TxConfirmation for this request where the swPduHandle is given as

parameter. ⌋ ()

The feature of SWS_Can_00276 is used to reduce time for searching in the CanIf
module implementation.

[SWS_Can_00016] ⌈ The Can module shall call CanIf_TxConfirmation to indicate a

successful transmission. It shall either called by the TX-interrupt service routine of

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

unused

HTH = 4

HTH = 5

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

Message Objects of CAN Hardware

Specification of CAN Driver
AUTOSAR Release 4.2.2

42 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

the corresponding HW resource or inside the Can_MainFunction_Write in case of

polling mode.⌋ (SRS_Can_01051)

7.5.1 Priority Inversion

Multiplexed transmission is necessary to prevent priority inversion (see chapter 2.1).

 [SWS_Can_00277] ⌈ The Can module shall allow that the functionality “Multiplexed

Transmission” is statically configurable (ON | OFF) at pre-compile

time.⌋ (SRS_Can_01134)

[SWS_Can_00401] ⌈ Several transmit hardware objects (defined by

"CanHwObjectCount") shall be assigned by one HTH to represent one transmit
entity to the upper layer.⌋ (SRS_Can_01134)

[SWS_Can_00402] ⌈ The Can module shall support multiplexed transmission

mechanisms for devices where either
 Multiple transmit hardware objects, which are grouped to a transmit entity can be

filled over the same register set, and the microcontroller stores the L-PDU into a
free buffer autonomously,

or
 The Hardware provides registers or functions to identify a free transmit hardware

object within a transmit entity.⌋ (SRS_Can_01134)

[SWS_Can_00403] ⌈ The Can module shall support multiplexed transmission for

devices, which send L-PDUs in order of L-PDU priority.⌋ (SRS_Can_01134)

Note: Software emulation of priority handling should be avoided, because the
overhead would void the advantage of the multiplexed transmission.

Figure 7-4: Example of assignment of HTHs and HRHs to the Hardware Objects with
multiplexed transmission. The numbering of HTHs and HRHs are implementation specific. The

chosen numbering is only an example.

Specification of CAN Driver
AUTOSAR Release 4.2.2

43 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.5.2 Transmit Data Consistency

[SWS_Can_00011] ⌈ The Can module shall directly copy the data from the upper

layer buffers. It is the responsibility of the upper layer to keep the buffer consistent

until return of function call (Can_Write).⌋ (SRS_SPAL_12075, SRS_Can_01059)

Specification of CAN Driver
AUTOSAR Release 4.2.2

44 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.6 L-PDU reception

[SWS_Can_00279] ⌈ On L-PDU reception, the Can module shall call the RX

indication callback function CanIf_RxIndication with ID, Hoh, abstract CanIf
ControllerId in parameter Mailbox, and the DLC and pointer to the L-SDU buffer in

parameter PduInfoPtr.⌋ (SRS_Can_01045)

[SWS_Can_00423] ⌈ In case of an Extended CAN frame, the Can module shall

convert the ID to a standardized format since the Upper layer (CANIF) does not know
whether the received CAN frame is a Standard CAN frame or Extended CAN frame.
In case of an Extended CAN frame, MSB of a received CAN frame ID needs to be

made as ‘1’ to mark the received CAN frame as Extended.⌋ ()

[SWS_Can_00396] ⌈ The RX-interrupt service routine of the corresponding HW

resource or the function Can_MainFunction_Read in case of polling mode shall call

the callback function CanIf_RxIndication.⌋ (SRS_Can_01045)

[SWS_Can_00060] ⌈ Data mapping by CAN to memory is defined in a way that the

CAN data byte which is received first is array element 0, the CAN data byte which is
received last is array element 7 or 63 in case of CAN FD.
If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper

layers.⌋ (SRS_SPAL_12063)

[SWS_CAN_00501] ⌈ CanDrv shall indicate whether the received message is a
conventional CAN frame or a CAN FD frame as described in Can_IdType.⌋ (
SRS_Can_01162)

7.6.1 Receive Data Consistency

To prevent loss of received messages, some controllers support a FIFO built
from a set of hardware objects, while on other controllers it is possible to
configure another hardware object with the same properties that works as a
shadow buffer and steps in when the main object is busy.

[SWS_CAN_00489]⌈ The CAN driver shall support controllers which implement a

hardware FIFO. The size of the FIFO is configured via "CanHwObjectCount".

⌋ ()

[SWS_CAN_00490]⌈ Controllers that do not support a hardware FIFO often provide

the capabilities to implement a shadow buffer mechanism, where additional
hardware objects take over when the primary hardware object is busy. The number

of hardware objects is configured via "CanHwObjectCount".⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

45 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Figure 7-5: Example of assignment of same HRHs to multiple Hardware Objects The chosen
numbering is only an example.

[SWS_Can_00299] ⌈ The Can module shall copy the L-SDU in a shadow buffer

after reception, if the RX buffer cannot be protected (locked) by CAN Hardware

against overwriting by a newly received message.⌋ ()

[SWS_Can_00300] ⌈ The Can module shall copy the L-SDU in a shadow buffer, if

the CAN Hardware is not globally accessible.⌋ ()

The complete RX processing (including copying to destination layer, e.g. COM) is
done in the context of the RX interrupt or in the context of the
Can_MainFunction_Read.

[SWS_Can_00012] ⌈ The Can module shall guarantee that neither the ISRs nor the

function Can_MainFunction_Read can be interrupted by itself. The CAN hardware (or
shadow) buffer is always consistent, because it is written and read in sequence in

exactly one function that is never interrupted by itself.⌋ (SRS_Can_01059)

If the CAN hardware cannot be configured to lock the RX hardware object after
reception (hardware feature), it could happen that the hardware buffer is overwritten
by a newly arrived message. In this case, the CAN controller detects an “overwrite”
event, if supported by hardware.
If the CAN hardware can be configured to lock the RX hardware object after
reception, it could happen that the newly arrived message cannot be stored to the
hardware buffer. In this case, the CAN controller detects an “overrun” event, if
supported by hardware.

[SWS_Can_00395] ⌈ If the default error detection for the Can module is enabled,

the Can module shall raise the error CAN_E_DATALOST in case of “overwrite” or

“overrun” event detection.⌋ ()

Implementation Hint:
The system designer shall assure that the runtime for message reception (interrupt
driven or polling) correlates with the fasted possible reception in the system.

Specification of CAN Driver
AUTOSAR Release 4.2.2

46 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.7 Wakeup concept

The Can module handles wakeups that can be detected by the Can controller itself
and not via the Can transceiver. There are two possible scenarios: wakeup by
interrupt and wakeup by polling.
For wakeup by interrupt, an ISR of the Can module is called when the hardware
detects the wakeup.

[SWS_Can_00364] ⌈ If the ISR for wakeup events is called, it shall call

EcuM_CheckWakeup in turn. The parameter passed to EcuM_CheckWakeup shall
be the ID of the wakeup source referenced by the CanWakeupSourceRef

configuration parameter.⌋ (SRS_BSW_00375, SRS_SPAL_12069,

SRS_Can_01054)
The ECU State Manager will then set up the MCU and call the Can module back via
the Can Interface, resulting in a call to Can_CheckWakeup.
When wakeup events are detected by polling, the ECU State Manager will cyclically
call Can_CheckWakeup via the Can Interface as before. In both cases,
Can_CheckWakeup will check if there was a wakeup detected by a Can controller
and return the result. The CAN driver will then inform the ECU State Manager of the
wakeup event via EcuM_SetWakeupEvent.
The wakeup validation to prevent false wakeup events, will be done by the ECU
State Manager and the Can Interface afterwards and without any help from the Can
module.
For a general description of the wakeup mechanisms and wakeup sequence
diagrams refer to Specification of ECU State Manager [7].

7.8 Notification concept

The Can module offers only an event triggered notification interface to the CanIf
module. Each notification is represented by a callback function.

[SWS_Can_00099] ⌈ The hardware events may be detected by an interrupt or by

polling status flags of the hardware objects. The configuration possibilities regarding
polling is hardware dependent (i.e. which events can be polled, which events need to

be polled), and not restricted by this standard. ⌋ (SRS_Can_01132)

[SWS_Can_00007] ⌈ It shall be possible to configure the driver such that no

interrupts at all are used (complete polling). ⌋ (SRS_Can_01062)

The configuration of what is and is not polled by the Can module is internal to the
driver, and not visible outside the module. The polling is done inside the CAN main
functions (Can_MainFunction_xxx). Also the polled events are notified by the
appropriate callback function. Then the call context is not the ISR but the CAN main
function. The implementation of all callback functions shall be done as if the call
context was the ISR.
For further details see also description of the CAN main functions
Can_MainFunction_Read, Can_MainFunction_Write, Can_MainFunction_BusOff and
Can_MainFunction_Wakeup.

Specification of CAN Driver
AUTOSAR Release 4.2.2

47 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.9 Reentrancy issues

A routine must satisfy the following conditions to be reentrant:
 It uses all shared variables in an atomic way, unless each is allocated to a

specific instance of the function.
 It does not call non-reentrant functions.
 It does not use the hardware in a non-atomic way.

Transmit requests are simply forwarded by the CanIf module inside the function
CanIf_Transmit.
The function CanIf_Transmit is re-entrant. Therefore the function Can_Write needs to
be implemented thread-safe (for example by using mutexes):
Further (preemptive) calls will return with CAN_BUSY when the write can’t be
performed re-entrant. (example: write to different hardware TX Handles allowed,
write to same TX Handles not allowed)
In case of CAN_BUSY the CanIf module queues that request. (same behavior as if
all hardware objects are busy).
Can_EnableCanInterrupts and Can_DisableCanInterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant.
All other services don’t need to be implemented as reentrant functions.
The CAN main functions (i.e. Can_MainFunction_Read) shall not be interrupted by
themselves. Therefore these CAN main functions are not reentrant.

7.10 Pretended Networking

Optimizing energy efficiency is becoming increasingly important in all automotive
domains since energy consumption has direct impact on fuel consumption, CO2
emissions, and range of hybrid or all electric vehicles. The concept of Pretended
Networking has a high potential for energy reduction on ECU level.

(a) ICOM Software implementation:
ICOM features are exclusively
implemented in software, reusing
the existing Communication
Controller

(b) ICOM is a functional hardware
extension of the existing
Communication Controller

(c) ICOM is a separate hardware
component with its own Communication
Controller

Figure 7-6: Possible ICOM implementations

The use of Intelligent Communication Controllers (ICOM) supports those features (no
specific hardware implementation mandatory). If some or all of the functionality of an

Specification of CAN Driver
AUTOSAR Release 4.2.2

48 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

ECU is temporarily not required, e.g., based on the vehicle state, the ECU can enter
a “Pretended Networking” mode. In this mode, the MCU and/or peripherals are
switched into a low-power mode. Only the ICOM and the connected transceivers stay
active. The ICOM generates a wakeup event, caused by, e.g. a received bus
message, when the ECU needs to resume operation.
Depending on the ICOM implementation, message ID and payload of received
messages may either be evaluated and filtered completely in hardware, require a
callback mechanism in software. As shown in Figure 7-6, the ECU implementation
can be divided into three possible variants – Approach (a) software approach, without
specific hardware to support Pretended Networking. Approach (b) depicts a
functional hardware extension of a communication controller and approach (c) shows
a hardware variant with a 2nd extended communication controller for wakeup
handling. All variants and ICOM implementations shall be supported by Pretended
Networking.

Depending on the hardware implementation, the ICOM is also able to send
messages. By using the ICOM to continue to send, e.g., status messages, other
nodes that rely on that message are not affected by an ECU in Pretended
Networking mode.

Furthermore, Pretended Networking aims at reducing wakeup response time, i.e., the
time between a wakeup event and valid behavior of an ECU. By using the ICOM to
save relevant messages during activated Pretended Networking mode, the
application has access to the last valid signal values directly after resuming
operation. Therefore, the ECU can immediately respond to a user request after
wakeup and does not have to wait until the according message is received again.

7.10.1 Support Pretended Networking mode handling

[SWS_CAN_00497] ⌈ The CAN driver shall deactivate Pretended Networking after

initialization of the CAN controller.⌋ ()

Activation of Pretended Networking:

[SWS_CAN_00462]⌈ Pretended Networking shall be activated by calling

Can_SetIcomConfiguration() with a configuration ID not set to 0.⌋ ()

[SWS_CAN_00464]⌈ CanDrv is responsible to perform reconfiguration of the CAN

Controller (incl. ICOM) according to the CanIcomConfig parameters for the selected

configuration (CanIcomConfigId).⌋ ()

[SWS_CAN_00467]⌈ If activation was successful then

CanIf_CurrentIcomConfiguration shall be called with the parameter Error set to
ICOM_SWITCH_E_OK referring to the corresponding CAN controller with the
abstract CanIf ControllerId. If activation was not successful then
CanIf_CurrentIcomConfiguration shall be called with the parameter Error set to
ICOM_SWITCH_E_FAILED referring to the corresponding CAN controller with the

abstract CanIf ControllerId.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

49 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_CAN_00468]⌈ If Pretended Networking is activated CanDrv shall call

CanIf_RxIndication() if and only if the received message matches the wakeup

conditions of the CanIcomConfig (see CanIcomWakeupCauses).⌋ ()

[SWS_CAN_00470]⌈ If Pretended Networking is activated CanDrv shall reject

Can_Write() requests with return value CAN_BUSY.⌋ ()

[SWS_CAN_00498]⌈ The CAN driver shall deactivate Pretended Networking before

the CAN Controller is started by SetControllerMode(CAN_T_START)⌋ ()

Deactivation of Pretended Networking:

[SWS_CAN_00471]⌈ Pretended Networking shall be deactivated (i.e. CanDrv shall

behave as when it is configured without Pretended Networking support) by calling

Can_SetIcomConfiguration() with a configuration ID = 0. ⌋ ()

[SWS_CAN_00472]⌈ If Pretended Networking is deactivated CanDrv shall process

the messages normally as configured in the normal configuration.⌋ ()

[SWS_CAN_00474]⌈ CAN driver shall inform CanIf about a configuration switch by

calling CanIf_CurrentIcomConfiguration referring to the corresponding CAN controller
with the abstract CanIf ControllerId. The error parameter is set to
ICOM_SWITCH_E_OK if deactivation is successful and to

ICOM_SWITCH_E_FAILED otherwise.⌋ ()

 [SWS_CAN_00499]⌈ The CAN driver shall deactivate Pretended Networking

before the CAN Controller is stopped by SetControllerMode(CAN_T_STOP).⌋ ()

7.10.2 Support autonomous sending and receiving of messages

[SWS_CAN_00477]⌈ Autonomous sending of messages in Pretended Networking

mode shall be supported only if additional ICOM hardware is available. A
configuration parameter defines if there is hardware support or not (Refer to

CanIcomVariant).⌋ ()

[SWS_CAN_00478]⌈ If the ICOM is implemented in software the controller shall not

send messages in Pretended Networking mode.⌋ ()

[SWS_CAN_00479]⌈ CanDriver shall forward all received messages received

during Pretended Networking Mode to CanIf.⌋ ()

7.11 Error classification

[SWS_Can_00104] ⌈ The Can module shall be able to detect the following errors

and exceptions depending on its configuration

(default/production)⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00331)

Specification of CAN Driver
AUTOSAR Release 4.2.2

50 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

7.11.1 Development Errors

Type or error Relevance Related error code Value
[hex]

API Service called with
wrong parameter

Development CAN_E_PARAM_POINTER
CAN_E_PARAM_HANDLE
CAN_E_PARAM_DLC
CAN_E_PARAM_CONTROLLER

0x01
0x02
0x03
0x04

API Service used without
initialization

Development CAN_E_UNINIT 0x05

Invalid transition for the
current mode

Development CAN_E_TRANSITION 0x06

Received CAN message
is lost

Development CAN_E_DATALOST 0x07

Parameter Baudrate has
an invalid value

Development CAN_E_PARAM_BAUDRATE 0x08

Invalid ICOM
Configuration Id

Development CAN_E_ICOM_CONFIG_INVALID 0x09

Invalid configuration set
selection

Development CAN_E_INIT_FAILED 0x0A

[SWS_Can_00026] ⌈ The Can module shall indicate errors that are caused by

erroneous usage of the Can module API. This covers API parameter checks and call

sequence errors. ⌋ (SRS_BSW_00337, SRS_BSW_00323, SRS_SPAL_00157)

[SWS_Can_00091] ⌈ After return of the DET the Can module’s function that raised

the default error shall return immediately.⌋ (SRS_SPAL_12448)

[SWS_Can_00089] ⌈ The Can module’s environment shall indicate Default errors

only in the return values of a function of the Can module when DET is switched on
and the function provides a return value. The returned value is CAN_NOT_OK.

⌋ (SRS_BSW_00369, SRS_BSW_00386, SRS_SPAL_12448)

7.11.2 Runtime Errors

 [SWS_CAN_XXXXX] Runtime Error Types

Type of error Related error code Value [hex]

⌋ ()

7.11.3 Transient Faults

 [SWS_CAN_XXXXX] Transient Faults Types

Specification of CAN Driver
AUTOSAR Release 4.2.2

51 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Type of error Related error code Value [hex]

⌋ ()

7.11.4 Production Errors

The Can module does not call the Diagnostic Event Manager, because there is no
production error code defined for the Can module.

7.11.5 Return Values

CAN_BUSY is reported via return value of the function Can_Write. The CanIf module
reacts according the sequence diagrams specified for the CanIf
module.CAN_NOT_OK is reported via return value in case of a wakeup during
transition to sleep mode.Bus-off and Wake-up events are forwarded via notification
callback functions.

7.12 CAN FD Support

For performance reasons some CAN controllers allow to use a Flexible Data-Rate
feature called CAN FD (see "CAN with Flexible Data-Rate" specification). Indicated
during the arbitration phase it is possible to switch to a higher baud rate during
payload and CRC. This second baud rate has to be configured by extending
CanControllerBaudrateConfig with CanControllerFdBaudrateConfig. If a baud rate is
active which has a CAN FD configuration (see CanControllerFdBaudrateConfig) the
CAN FD feature is enabled for this controller. The specified second baud rate is
needed to support reception of CAN FD frames with bit rate switch (BRS). Whether
the second baudrate is used for transmission or not depends on configuration
parameter CanControllerTxBitRateSwitch (see CanControllerFdBaudrateConfig).

However, there may be cases where conventional CAN 2.0 messages need to
betransmitted in networks supporting CAN-FD messages for example to facilitate
CAN selective wakeup. In these cases it is necessary to support transmitting
interleaved conventional CAN messages with CAN-FD messages. This can be
achieved on frame level by using the two most significant bits of the CanId (see
Can_IdType, SWS_Can_00416) passed during Can_Write to indicate which kind of
frame shall be used.

CAN FD also supports an extended payload which allows the transmission of up to
64 bytes. This feature also depends on the CAN FD configuration (see
CanControllerFdBaudrateConfig). Therefore, if the CAN Controller is in CAN FD
mode (valid CanControllerFdBaudrateConfig) and the CAN FD flag is set in CanId
passed to Can_Write(), CanDrv supports the transmission of PDUs with a length up
to 64 bytes. If there is a request to transmit a CAN FD frame and the CAN Controller
is not in CAN FD mode (no CanControllerFdBaudrateConfig) the frame is sent as
conventional CAN frame as long as the PDU length <= 8 bytes.

Specification of CAN Driver
AUTOSAR Release 4.2.2

52 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Specification of CAN Driver
AUTOSAR Release 4.2.2

53 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

8 API specification

The prefix of the function names may be changed in an implementation with several
Can modules as described in SWS_Can_00284.

8.1 Imported types

In this chapter all types included from the following files are listed:

[SWS_Can_00222] ⌈

Module Imported Type

CanIf CanIf_ControllerModeType

Can_GeneralTypes Can_HwHandleType

Can_HwType

Can_PduType

Can_ReturnType

Can_StateTransitionType

ComStack_Types IcomConfigIdType

IcomSwitch_ErrorType

PduIdType

PduInfoType

Dem Dem_EventIdType

Dem_EventStatusType

EcuM EcuM_WakeupSourceType

Icu Icu_ChannelType

Os CounterType

StatusType

TickRefType

Std_Types Std_ReturnType

Std_VersionInfoType

⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

54 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

8.2 Type definitions

[SWS_CAN_00487]⌈ The types specified in Can_GeneralTypes shall be declared

in Can_GeneralTypes.h ⌋ ()

[SWS_Can_00439]⌈ The content of Can_GeneralTypes.h shall be protected by a

CAN_GENERAL_TYPES define. ⌋ ()

[SWS_Can_00440]⌈ If different CAN drivers are used, only one instance of this file

has to be included in the source tree. For implementation all Can_GeneralTypes.h

related types in the documents mentioned before shall be considered.⌋ ()

8.2.1 Can_ConfigType

[SWS_Can_00413] ⌈

Name: Can_ConfigType

Type: Structure

Range: Implementation specific.

Description: This is the type of the external data structure containing the overall initialization
data for the CAN driver and SFR settings affecting all controllers. Furthermore it
contains pointers to controller configuration structures. The contents of the
initialization data structure are CAN hardware specific.

⌋ ()

8.2.2 Can_PduType

[SWS_Can_00415] ⌈

Name: Can_PduType

Type: Structure

Element: PduIdType swPduHandle --

uint8 length --

Can_IdType id --

uint8* sdu --

Description: This type unites PduId (swPduHandle), SduLength (length), SduData (sdu), and
CanId (id) for any CAN L-SDU.

⌋ ()

8.2.3 Can_IdType

[SWS_Can_00416] ⌈

Name: Can_IdType

Type: uint16, uint32

Range: Standard32Bit -- 0..0x400007FF

Standard16Bit -- 0..0x47FF

Extended32Bit -- 0..0xDFFFFFFF

Description: Represents the Identifier of an L-PDU. The two most significant bits specify the
frame type:
00 CAN message with Standard CAN ID
01 CAN FD frame with Standard CAN ID

Specification of CAN Driver
AUTOSAR Release 4.2.2

55 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10 CAN message with Extended CAN ID
11 CAN FD frame with Extended CAN ID

⌋ ()

8.2.4 Can_HwHandleType

[SWS_Can_00429] ⌈

Name: Can_HwHandleType

Type: uint8, uint16

Range: Standard -- 0..0x0FF

Extended -- 0..0xFFFF

Description: Represents the hardware object handles of a CAN hardware unit. For CAN
hardware units with more than 255 HW objects use extended range.

⌋ ()

8.2.5 Can_HwType

[SWS_CAN_00496]⌈

Name: Can_HwType

Type: Structure

Element: Can_IdType CanId Standard/Extended CAN ID of CAN L-
PDU

Can_HwHandleType Hoh ID of the corresponding Hardware
Object Range

uint8 ControllerId ControllerId provided by CanIf clearly
identify the corresponding controller

Description: This type defines a data structure which clearly provides an Hardware Object
Handle including its corresponding CAN Controller and therefore CanDrv as well
as the specific CanId.

⌋ ()

8.2.6 Can_StateTransitionType

[SWS_Can_00417] ⌈

Name: Can_StateTransitionType

Type: Enumeration

Range: CAN_T_START CAN controller transition value to request state STARTED.

CAN_T_STOP CAN controller transition value to request state STOPPED.

CAN_T_SLEEP CAN controller transition value to request state SLEEP.

CAN_T_WAKEUP CAN controller transition value to request state STOPPED
from state SLEEP.

Description: State transitions that are used by the function CAN_SetControllerMode

⌋ ()

8.2.7 Can_ReturnType

[SWS_Can_00039] ⌈

Name: Can_ReturnType

Specification of CAN Driver
AUTOSAR Release 4.2.2

56 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Type: Enumeration

Range: CAN_OK success

CAN_NOT_OK error occurred or wakeup event occurred during sleep
transition

CAN_BUSY transmit request could not be processed because no transmit
object was available

Description: Return values of CAN driver API .

⌋ (SRS_BSW_00331)

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete hardware unit

8.3.1.1 Can_Init

[SWS_Can_00223] ⌈

Service name: Can_Init

Syntax: void Can_Init(

 const Can_ConfigType* Config

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Config Pointer to driver configuration.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function initializes the module.

⌋ (SRS_BSW_00358, SRS_BSW_00414)

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

[SWS_Can_00174] ⌈ If default error detection for the Can module is enabled: The

function Can_Init shall raise the error CAN_E_TRANSITION if the driver is not in

state CAN_UNINIT.⌋ ()

[SWS_Can_00408] ⌈ If default error detection for the Can module is enabled: The

function Can_Init shall raise the error CAN_E_TRANSITION if the CAN controllers

are not in state UNINIT.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

57 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

8.3.1.2 Can_GetVersionInfo

[SWS_Can_00224] ⌈

Service name: Can_GetVersionInfo

Syntax: void Can_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: This function returns the version information of this module.

⌋ ()

[SWS_Can_00177] ⌈ If default error detection for the Can module is enabled: The

function Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if the

parameter versionInfo is a null pointer.⌋ ()

8.3.1.3 Can_CheckBaudrate

[SWS_Can_00454] ⌈

Service name: Can_CheckBaudrate

Syntax: Std_ReturnType Can_CheckBaudrate(

 uint8 Controller,

 uint16 Baudrate

)

Service ID[hex]: 0x0e

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

Controller CAN Controller to check for the support of a certain
baudrate

Baudrate Baudrate to check in kbps

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Baudrate supported by the CAN Controller

E_NOT_OK: Baudrate not supported / invalid CAN
controller

Description: This service shall check, if a certain CAN controller supports a requested baudrate

Please note that this API is deprecated and is kept only for backward compatibility
reasons. In the next major release this API will be deleted.

⌋ ()

[SWS_Can_00455] ⌈ The service Can_CheckBaudrate(Controller, Baudrate)

shall be called by CanIf_CheckBaudrate() for the requested CAN controller. ⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

58 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00456] ⌈ If the CAN Driver module was not initialized before calling

Can_CheckBaudrate(Controller, Baudrate) and if default error detection is

enabled (i.e. CAN_DEV_ERROR_DETECT equals ON), then the Can shall report default

error code CAN_E_UNINIT to the Det_ReportError service of the DET module.⌋ ()

[SWS_Can_00457] ⌈ If parameter Controller of Can_CheckBaudrate(Controller,

Baudrate)has an invalid value and if default error detection is enabled (i.e.

CAN_DEV_ERROR_DETECT equals ON), then the Can shall report default error code

CAN_E_PARAM_CONTROLLER to the Det_ReportError service of the DET module.⌋ ()

[SWS_Can_00458] ⌈ If parameter Baudrate of Can_CheckBaudrate(Controller,

Baudrate)has an invalid value and if default error detection is enabled (i.e.

CAN_DEV_ERROR_DETECT equals ON), then the Can shall report default error code

CAN_E_PARAM_BAUDRATE to the Det_ReportError service of the DET module.⌋ ()

[SWS_Can_00459] ⌈ Caveats of Can_CheckBaudrate(Controller, Baudrate):

 The call context is on task level (polling mode).

 The Can must be initialized after Power ON.⌋ ()

[SWS_Can_00460] ⌈ Configuration of Can_CheckBaudrate(Controller, Baudrate): If

Can supports changing of the baudrate and thus this service, shall be configurable

via CAN_CHANGE_BAUDRATE_API⌋ ()

8.3.2 Services affecting one single CAN Controller

8.3.2.1 Can_ChangeBaudrate

[SWS_Can_00449] ⌈

Service name: Can_ChangeBaudrate (obsolete)

Syntax: Std_ReturnType Can_ChangeBaudrate(

 uint8 Controller,

 uint16 Baudrate

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
Controller CAN Controller, whose baudrate shall be changed

Baudrate Requested baudrate in kbps

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Service request accepted, baudrate change

started
E_NOT_OK: Service request not accepted

Description: This service shall change the baudrate of the CAN controller.

Please note that this API is deprecated and is kept only for backward compatibility
reasons. Can_SetBaudrate API shall be used instead to change the baud rate
configuration. In the next major release this API will be deleted.
Tags:
atp.Status=obsolete

Specification of CAN Driver
AUTOSAR Release 4.2.2

59 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

atp.StatusRevisionBegin=4.1.1
atp.StatusUseInstead=Can_SetBaudrate

⌋ ()

The function Can_ChangeBaudrate re-initializes the CAN controller and the controller
specific settings (see SWS_Can_00062).
Different sets of static configuration may have been configured. The parameter
*Config points to the hardware specific structure that describes the configuration (see
SWS_Can_00291).
Global CAN Hardware Unit settings must not be changed. Only a subset of
parameters may be changed during runtime (see chapter 10). For further
explanation, see also chapter 7.4
The CAN controller must be in state STOPPED when this function is called (see
SWS_Can_00256 and SWS_Can_00260).
The CAN controller is in state STOPPED after (re-)initialization (see
SWS_Can_00259).

[SWS_Can_00450] ⌈ If default error detection for the Can module is enabled: The

function Can_ChangeBaudrate shall raise the error CAN_E_UNINIT if the driver is

not yet initialized.⌋ ()

[SWS_Can_00451] ⌈ If default error detection for the Can module is enabled: The

function Can_ChangeBaudrate shall raise the error CAN_E_PARAM_BAUDRATE if

the parameter Baudrate has an invalid value.⌋ ()

[SWS_Can_00452] ⌈ If default error detection for the Can module is enabled: The

function Can_ChangeBaudrate shall raise the error CAN_E_PARAM_CONTROLLER if

the parameter Controller is out of range.⌋ ()

[SWS_Can_00453] ⌈ If default error detection for the Can module is enabled: if the

controller is not in state STOPPED, the function Can_ChangeBaudrate shall raise the

error CAN_E_TRANSITION.⌋ ()

[SWS_Can_00461] ⌈ If hardware supports wake-up (i.e. CanWakeupSupport ==
true), it shall be checked during controller initialization if there was a wake-up event
on the specific CAN controller. If a wake-up event has been detected, the wake-up
shall directly be reported to the EcuM via EcuM_SetWakeupEvent call-back

function.⌋()

8.3.2.2 Can_SetBaudrate

[SWS_CAN_00491]⌈

Service name: Can_SetBaudrate

Syntax: Std_ReturnType Can_SetBaudrate(

 uint8 Controller,

 uint16 BaudRateConfigID

)

Service ID[hex]: 0x0f

Sync/Async: Synchronous

Reentrancy: Reentrant for different Controllers. Non reentrant for the same Controller.

Parameters (in):

Controller CAN controller, whose baud rate shall be set

BaudRateConfigID references a baud rate configuration by ID (see
CanControllerBaudRateConfigID)

Parameters None

Specification of CAN Driver
AUTOSAR Release 4.2.2

60 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

(inout):

Parameters (out): None

Return value:
Std_ReturnType E_OK: Service request accepted, setting of (new) baud rate

started
E_NOT_OK: Service request not accepted

Description: This service shall set the baud rate configuration of the CAN controller. Depending
on necessary baud rate modifications the controller might have to reset.

⌋ ()

There might be several baud rate configurations available. The function
Can_SetBaudrate can be used to switch between different configurations.
Depending on the old and new baud rate configuration only a subset of
parameters may be changed during runtime and a re-initialization of the CAN
Controller might be avoidable.

 If the call of Can_SetBaudrate will cause a re-initialization of the CAN
Controller the CAN controller must be in state STOPPED when this function is
called (see SWS_Can_00256 and SWS_Can_00260).
 The CAN controller is in state STOPPED after (re-)initialization (see
SWS_Can_00259).

[SWS_CAN_00492]⌈ If default error detection for the Can module is enabled:

The function Can_SetBaudrate shall raise the error CAN_E_UNINIT and return

E_NOT_OK if the driver is not yet initialized.⌋ ()

[SWS_CAN_00493]⌈ If default error detection for the Can module is enabled:

The function Can_SetBaudrate shall raise the error CAN_E_PARAM_BAUDRATE

and return E_NOT_OK if the parameter BaudRateConfigID has an invalid value.⌋ ()

[SWS_CAN_00494]⌈ If default error detection for the Can module is enabled

the function Can_SetBaudrate shall raise the error CAN_E_PARAM_CONTROLLER

and return E_NOT_OK if the parameter Controller is out of range.⌋ ()

[SWS_CAN_00500]⌈ If the requested baud rate change can not performed without

a re-initialization of the CAN Controller E_NO_OK shall be returned.⌋ ()

8.3.2.3 Can_SetControllerMode

[SWS_Can_00230] ⌈

Service name: Can_SetControllerMode

Syntax: Can_ReturnType Can_SetControllerMode(

 uint8 Controller,

 Can_StateTransitionType Transition

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
Controller CAN controller for which the status shall be changed

Transition Transition value to request new CAN controller state

Specification of CAN Driver
AUTOSAR Release 4.2.2

61 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Parameters
(inout):

None

Parameters (out): None

Return value:
Can_ReturnType CAN_OK: request accepted

CAN_NOT_OK: request not accepted, a development error
occurred

Description: This function performs software triggered state transitions of the CAN controller
State machine.

⌋ ()

[SWS_Can_00017] ⌈ The function Can_SetControllerMode shall perform software

triggered state transitions of the CAN controller State machine. See also

[SRS_SPAL_12169]⌋ (SRS_SPAL_12169, SRS_Can_01053)

[SWS_Can_00384] ⌈ Each time the CAN controller state machine is triggered with

the state transition value CAN_T_START, the function Can_SetControllerMode shall
re-initialize the CAN controller with the same controller configuration set previously

used by functions Can_SetBaudrate or Can_Init.⌋ ()

Refer to SWS_Can_00048 for the case of a wakeup event from CAN bus occurred
during sleep transition.

[SWS_Can_00294] ⌈ The function Can_SetControllerMode shall disable the wake-

up interrupt, while checking the wake-up status. ⌋ ()

[SWS_Can_00196] ⌈ The function Can_SetControllerMode shall enable interrupts

that are needed in the new state. ⌋ ()

[SWS_Can_00425] ⌈ Enabling of CAN interrupts shall not be executed, when CAN

interrupts have been disabled by function Can_DisableControllerInterrupts.⌋ ()

[SWS_Can_00197] ⌈ The function Can_SetControllerMode shall disable interrupts

that are not allowed in the new state. ⌋ ()

[SWS_Can_00426] ⌈ Disabling of CAN interrupts shall not be executed, when CAN

interrupts have been disabled by function Can_DisableControllerInterrupts.⌋ ()

Caveat:
The behavior of the transmit operation is undefined when the ‘software’ state in the
CanIf module is already CANIF_CS_STARTED, but the CAN controller is not yet in
operational mode.
The CanIf module must ensure that the function is not called before the previous call
of Can_SetControllerMode returned.
The CanIf module is responsible not to initiate invalid transitions.

[SWS_Can_00198] ⌈ If default error detection for the Can module is enabled: if the

module is not yet initialized, the function Can_SetControllerMode shall raise default

error CAN_E_UNINIT and return CAN_NOT_OK.⌋ ()

[SWS_Can_00199] ⌈ If default error detection for the Can module is enabled: if the

parameter Controller is out of range, the function Can_SetControllerMode shall

raise default error CAN_E_PARAM_CONTROLLER and return CAN_NOT_OK.⌋ ()

[SWS_Can_00200] ⌈ If default error detection for the Can module is enabled: if an

invalid transition has been requested, the function Can_SetControllerMode shall

raise the error CAN_E_TRANSITION and return CAN_NOT_OK.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

62 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

8.3.2.4 Can_DisableControllerInterrupts

[SWS_Can_00231] ⌈

Service name: Can_DisableControllerInterrupts

Syntax: void Can_DisableControllerInterrupts(

 uint8 Controller

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Controller CAN controller for which interrupts shall be disabled.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function disables all interrupts for this CAN controller.

⌋ (SRS_BSW_00312)

[SWS_Can_00049] ⌈ The function Can_DisableControllerInterrupts shall access the

CAN controller registers to disable all interrupts for that CAN controller only, if

interrupts for that CAN Controller are enabled.⌋ (SRS_Can_01043)

[SWS_Can_00202] ⌈ When Can_DisableControllerInterrupts has been called

several times, Can_EnableControllerInterrupts must be called as many times before

the interrupts are re-enabled.⌋ ()

Implementation note:
The function Can_DisableControllerInterrupts can increase a counter on every
execution that indicates how many Can_EnableControllerInterrupts need to be called
before the interrupts will be enabled (incremental disable).

[SWS_Can_00204] ⌈ The Can module shall track all individual enabling and

disabling of interrupts in other functions (i.e. Can_SetControllerMode) , so that the

correct interrupt enable state can be restored.⌋ ()

Implementation example:
• in ‘interrupts enabled mode’: For each interrupt state change does not only
modify the interrupt enable bit, but also a software flag.
• in ‘interrupts disabled mode’: only the software flag is modified.
• Can_DisableControllerInterrupts and Can_EnableControllerInterrupts do not
modify the software flags.
• Can_EnableControllerInterrupts reads the software flags to re-enable the
correct interrupts.

[SWS_Can_00205] ⌈ If default error detection for the Can module is enabled: The

function Can_DisableControllerInterrupts shall raise the error CAN_E_UNINIT if the

driver not yet initialized.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

63 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00206] ⌈ If default error detection for the Can module is enabled: The

function Can_DisableControllerInterrupts shall raise the error

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.⌋ ()

8.3.2.5 Can_EnableControllerInterrupts

[SWS_Can_00232] ⌈

Service name: Can_EnableControllerInterrupts

Syntax: void Can_EnableControllerInterrupts(

 uint8 Controller

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Controller CAN controller for which interrupts shall be re-enabled

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function enables all allowed interrupts.

⌋ (SRS_BSW_00312)

[SWS_Can_00050] ⌈ The function Can_EnableControllerInterrupts shall enable all

interrupts that must be enabled according the current software

status.⌋ (SRS_Can_01043)

SWS_Can_00202 applies to this function.

[SWS_Can_00208] ⌈ The function Can_EnableControllerInterrupts shall perform no

action when Can_DisableControllerInterrupts has not been called before.⌋ ()

See also implementation example for Can_DisableControllerInterrupts.

[SWS_Can_00209] ⌈ If default error detection for the Can module is enabled: The

function Can_EnableControllerInterrupts shall raise the error CAN_E_UNINIT if the

driver not yet initialized.⌋ ()

[SWS_Can_00210] ⌈ If default error detection for the Can module is enabled: The

function Can_EnableControllerInterrupts shall raise the error

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.⌋ ()

8.3.2.6 Can_CheckWakeup

[SWS_Can_00360] ⌈

Service name: Can_CheckWakeup

Syntax: Can_ReturnType Can_CheckWakeup(

 uint8 Controller

)

Service ID[hex]: 0x0b

Specification of CAN Driver
AUTOSAR Release 4.2.2

64 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Controller Controller to be checked for a wakeup.

Parameters
(inout):

None

Parameters (out): None

Return value:
Can_ReturnType CAN_OK: API call has been accepted

CAN_NOT_OK: API call has not been accepted

Description: This function checks if a wakeup has occurred for the given controller.

⌋ ()

[SWS_Can_00361] ⌈ The function Can_CheckWakeup shall check if the requested

CAN controller has detected a wakeup. If a wakeup event was successfully detected,

reporting shall be done to EcuM via API EcuM_SetWakeupEvent.⌋ ()

[SWS_CAN_00485]⌈ The function Can_CheckWakeup shall be pre compile time

configurable On/Off by the configuration parameter: CanWakeupFunctionalityAPI ⌋ ()

[SWS_Can_00362] ⌈ If default error detection for the Can module is enabled: The

function Can_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is not

yet initialized.⌋ ()

[SWS_Can_00363] ⌈ If default error detection for the Can module is enabled: The

function Can_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if

the parameter Controller is out of range.⌋ ()

8.3.3 Services affecting a Hardware Handle

8.3.3.1 Can_Write

[SWS_Can_00233] ⌈

Service name: Can_Write

Syntax: Can_ReturnType Can_Write(

 Can_HwHandleType Hth,

 const Can_PduType* PduInfo

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant (thread-safe)

Parameters (in):

Hth information which HW-transmit handle shall be used for transmit.
Implicitly this is also the information about the controller to use
because the Hth numbers are unique inside one hardware unit.

PduInfo Pointer to SDU user memory, DLC and Identifier.

Parameters
(inout):

None

Parameters (out): None

Return value:
Can_ReturnType CAN_OK: Write command has been accepted

CAN_NOT_OK: development error occurred
CAN_BUSY: No TX hardware buffer available or pre-emptive call

Specification of CAN Driver
AUTOSAR Release 4.2.2

65 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

of Can_Write that can't be implemented re-entrant

Description: This function is called by CanIf to pass a CAN message to CanDrv for
transmission.

⌋ (SRS_BSW_00312)

The function Can_Write first checks if the hardware transmit object that is identified
by the HTH is free and if another Can_Write is ongoing for the same HTH.

[SWS_Can_00212] ⌈ The function Can_Write shall perform following actions if the

hardware transmit object is free:
 The mutex for that HTH is set to ‘signaled’
 The ID, DLC and SDU are put in a format appropriate for the hardware (if

necessary) and copied in the appropriate hardware registers/buffers.
 All necessary control operations to initiate the transmit are done
 The mutex for that HTH is released

 The function returns with CAN_OK⌋ (SRS_Can_01049)

[SWS_Can_00213] ⌈ The function Can_Write shall perform no actions if the

hardware transmit object is busy with another transmit request for an L-PDU:
 1. The transmission of the other L-PDU shall not be cancelled and the function
Can_Write is left without any actions.

 2. The function Can_Write shall return CAN_BUSY.⌋ (SRS_Can_01049).

[SWS_Can_00214] ⌈ The function Can_Write shall return CAN_BUSY if a

preemptive call of Can_Write has been issued, that could not be handled reentrant

(i.e. a call with the same HTH).⌋ (SRS_BSW_00312, SRS_Can_01049)

[SWS_Can_00275] ⌈ The function Can_Write shall be non-blocking.⌋ ()

[SWS_Can_00216] ⌈ If default error detection for the Can module is enabled: The

function Can_Write shall raise the error CAN_E_UNINIT and shall return

CAN_NOT_OK if the driver is not yet initialized.⌋ ()

[SWS_Can_00217] ⌈ If default error detection for the Can module is enabled: The

function Can_Write shall raise the error CAN_E_PARAM_HANDLE and shall return

CAN_NOT_OK if the parameter Hth is not a configured Hardware Transmit

Handle.⌋ ()

[SWS_Can_00218] ⌈ The function Can_Write shall return CAN_NOT_OK and if

default error detection for the CAN module is enabled shall raise the error
CAN_E_PARAM_DLC:

 If the length is more than 64 byte.
 If the length is more than 8 byte and the CAN controller is not in CAN FD

mode (no CanControllerFdBaudrateConfig).
 If the length is more than 8 byte and the CAN controller is in CAN FD mode

(valid CanControllerFdBaudrateConfig), but the CAN FD flag in

Can_PduType->id is not set (refer Can_IdType).⌋ (SRS_Can_01005)

[SWS_CAN_00219] ⌈ If default error detection for CanDrv is enabled:

Can_Write() shall raise CAN_E_PARAM_POINTER and shall return CAN_NOT_OK if

the parameter PduInfo is a null pointer.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

66 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_CAN_00503] ⌈ Can_Write() shall accept a null pointer as SDU

(Can_PduType.Can_SduPtrType = NULL) if the trigger transmit API is enabled

for this hardware object (CanTriggerTransmitEnable = TRUE).⌋ ()

[SWS_CAN_00504] ⌈ If the trigger transmit API is enabled for the hardware object,

Can_Write() shall interpret a null pointer as SDU

(Can_PduType.Can_SduPtrType = NULL) as request for using the trigger

transmit interface. If so and the hardware object is free, Can_Write() shall call

CanIf_TriggerTransmit() to acquire the PDU’s data.⌋ ()

[SWS_CAN_00505] ⌈ If default error detection for CanDrv is enabled:

Can_Write() shall raise CAN_E_PARAM_POINTER and shall return CAN_NOT_OK if

the trigger transmit API is disabled for this hardware object

(CanTriggerTransmitEnable = FALSE) and the SDU pointer inside PduInfo is a null

pointer.⌋ ()

[SWS_CAN_00506] ⌈ If default error detection for CanDrv is enabled:

Can_Write() shall raise CAN_E_PARAM_POINTER and shall return CAN_NOT_OK if

the trigger transmit API (CanIf_TriggerTransmit()) returns E_NOT_OK.⌋ ()

[SWS_CAN_00486] ⌈ The CAN Frame has to be sent according to the two most

significant bits of Can_PduType->id. The CAN FD frame bit is only evaluated if

CAN Controller is in CAN FD mode (valid CanControllerFdBaudrateConfig).⌋ ()

[SWS_CAN_00502] ⌈ If PduInfo->SduLength does not match possible DLC values

CanDrv shall use the next higher valid DLC for transmission with initialization of
unused bytes to the value of the corresponding CanFdPaddingValue (see

ECUC_Can_00485).⌋ (SRS_Can_01160)

8.4 Call-back notifications

This chapter lists all functions provided by the Can module to lower layer modules.
The lower layer module of Can module is the SPI module. The SPI module, which is
part of the MCAL, may used to exchange data between the microcontroller and an
external CAN controller.
The Can module does not provide callback functions. Only synchronous MCAL API
may used to access external CAN controllers.

8.4.1 Call-out function

The AUTOSAR CAN module supports optional L-PDU callouts on every reception of a
L-PDU.

[SWS_Can_00443] ⌈ The L-PDU-Callout API shall be defined as:
FUNC(boolean, COM_APPL_CODE) <LPDU_CalloutName>

(

uint8 Hrh,

Can_IdType CanId,

uint8 CanDlc,

const uint8 *CanSduPtr

)

⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

67 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

where <LPDU_CalloutName> has to be substituted with the concrete L-PDU callout
name which is configurable, see SWS_Can_00434_Conf.

[SWS_Can_00444] ⌈ If the L-PDU callout returns false, the L-PDU shall not be

processed any further. ⌋ ()

8.4.2 Enabling/Disabling wakeup notification

[SWS_Can_00445] ⌈ Can driver shall use the following APIs provided by Icu driver,

to enable and disable the wakeup event notification:

 Icu_EnableNotification

 Icu_DisableNotification⌋ ()

[SWS_Can_00446] ⌈ Icu_EnableNotification shall be called when “external” Can

controllers have been transitioned to SLEEP state (CANIF_CS_SLEEP).⌋ ()

[SWS_Can_00447] ⌈ Icu_DisableNotification shall be called when “external” Can

controllers have been transitioned to STOPPED state (CANIF_CS_STOPPED).⌋ ()

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

[SWS_Can_00110] ⌈ There is no requirement regarding the execution order of the

CAN main processing functions.⌋ (SRS_BSW_00428)

8.5.1.1 Can_MainFunction_Write

[SWS_Can_00225] ⌈

Service name: Can_MainFunction_Write

Syntax: void Can_MainFunction_Write(

 void

)

Service ID[hex]: 0x01

Description: This function performs the polling of TX confirmation when
CAN_TX_PROCESSING is set to POLLING.

⌋ ()

[SWS_Can_00031] ⌈ The function Can_MainFunction_Write shall perform the

polling of TX confirmation when CanTxProcessing is set to

POLLING.⌋ (SRS_BSW_00432, SRS_BSW_00373, SRS_BSW_00376,

SRS_SPAL_00157)

[SWS_Can_00178] ⌈ The Can module may implement the function

Can_MainFunction_Write as empty define in case no polling at all is used.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

68 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00179] ⌈ If default error detection for the module Can is enabled: The

function Can_MainFunction_Write shall raise the error CAN_E_UNINIT if the driver is

not yet initialized.⌋ ()

[SWS_Can_00441] ⌈ The API name of Can_MainFunction_Write() shall obey the

following pattern:

 Can_MainFunction_Wrtte_0()

 Can_MainFunction_Write_1()

 Can_MainFunction_Write_2()

 Can_MainFunction_Write_3()

 ... and so on, if more than one period (see ECUC_Can_00356) is supported.⌋ ()

8.5.1.2 Can_MainFunction_Read

[SWS_Can_00226] ⌈

Service name: Can_MainFunction_Read

Syntax: void Can_MainFunction_Read(

 void

)

Service ID[hex]: 0x08

Description: This function performs the polling of RX indications when
CAN_RX_PROCESSING is set to POLLING.

⌋ ()

[SWS_Can_00108] ⌈ The function Can_MainFunction_Read shall perform the

polling of RX indications when CanRxProcessing is set to

POLLING.⌋ (SRS_BSW_00432, SRS_SPAL_00157)

[SWS_Can_00180] ⌈ The Can module may implement the function

Can_MainFunction_Read as empty define in case no polling at all is used.⌋ ()

[SWS_Can_00181] ⌈ If default error detection for the Can module is enabled: The

function Can_MainFunction_Read shall raise the error CAN_E_UNINIT if the driver is

not yet initialized.⌋ ()

[SWS_Can_00442] ⌈ The API name of Can_MainFunction_Read() shall obey the

following pattern:
• Can_MainFunction_Read_0()
• Can_MainFunction_Read_1()
• Can_MainFunction_Read_2()
• Can_MainFunction_Read_3()
• ... and so on, if more than one period (see ECUC_Can_00358) is

supported.⌋ ()

8.5.1.3 Can_MainFunction_BusOff

[SWS_Can_00227] ⌈

Service name: Can_MainFunction_BusOff

Syntax: void Can_MainFunction_BusOff(

 void

Specification of CAN Driver
AUTOSAR Release 4.2.2

69 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

)

Service ID[hex]: 0x09

Description: This function performs the polling of bus-off events that are configured statically as
'to be polled'.

⌋ ()

[SWS_Can_00109] ⌈ The function Can_MainFunction_BusOff shall perform the

polling of bus-off events that are configured statically as ‘to be polled’.⌋ ()

(SRS_BSW_00432, SRS_SPAL_00157)

[SWS_Can_00183] ⌈ The Can module may implement the function

Can_MainFunction_BusOff as empty define in case no polling at all is used.⌋ ()

[SWS_Can_00184] ⌈ If default error detection for the Can module is enabled: The

function Can_MainFunction_BusOff shall raise the error CAN_E_UNINIT if the driver

is not yet initialized.⌋ ()

8.5.1.4 Can_MainFunction_Wakeup

[SWS_Can_00228] ⌈

Service name: Can_MainFunction_Wakeup

Syntax: void Can_MainFunction_Wakeup(

 void

)

Service ID[hex]: 0x0a

Description: This function performs the polling of wake-up events that are configured statically
as 'to be polled'.

⌋ ()

[SWS_Can_00112] ⌈ The function Can_MainFunction_Wakeup shall perform the

polling of wake-up events that are configured statically as ‘to be

polled’.⌋ (SRS_BSW_00432, SRS_SPAL_00157)

[SWS_Can_00185] ⌈ The Can module may implement the function

Can_MainFunction_Wakeup as empty define in case no polling at all is used.⌋ ()

[SWS_Can_00186] ⌈ If default error detection for the Can module is enabled: The

function Can_MainFunction_Wakeup shall raise the error CAN_E_UNINIT if the

driver is not yet initialized.⌋ ()

8.5.1.5 Can_MainFunction_Mode

[SWS_Can_00368] ⌈

Service name: Can_MainFunction_Mode

Syntax: void Can_MainFunction_Mode(

 void

)

Service ID[hex]: 0x0c

Description: This function performs the polling of CAN controller mode transitions.

⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

70 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

[SWS_Can_00369] ⌈ The function Can_MainFunction_Mode shall implement the

polling of CAN status register flags to detect transition of CAN Controller state.

Compare to chapter 7.3.2.⌋ ()

[SWS_Can_00379] ⌈ If default error detection for the Can module is enabled: The

function Can_MainFunction_Mode shall raise the error CAN_E_UNINIT if the driver

is not yet initialized.⌋ ()

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module. All callback functions that are called by the Can module are implemented
in the CanIf module. These callback functions are not configurable.

[SWS_Can_00234] ⌈

API function Description

CanIf_ControllerBusOff This service indicates a Controller BusOff event referring to the
corresponding CAN Controller with the abstract CanIf ControllerId.

CanIf_ControllerModeIndication This service indicates a controller state transition referring to the
corresponding CAN controller with the abstract CanIf ControllerId.

CanIf_RxIndication This service indicates a successful reception of a received CAN Rx L-
PDU to the CanIf after passing all filters and validation checks.

CanIf_TxConfirmation This service confirms a previously successfully processed transmission
of a CAN TxPDU.

GetCounterValue This service reads the current count value of a counter (returning either
the hardware timer ticks if counter is driven by hardware or the
software ticks when user drives counter).

⌋ (SRS_BSW_00387, SRS_Can_01055)

8.6.2 Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of
the module.

[SWS_Can_00235] ⌈

API function Description

CanIf_CurrentIcomConfiguration This service shall inform about the change of the Icom Configuration
of a CAN controller using the abstract CanIf ControllerId.

CanIf_TriggerTransmit Within this API, the upper layer module (called module) shall check
whether the available data fits into the buffer size reported by
PduInfoPtr->SduLength.
If it fits, it shall copy its data into the buffer provided by PduInfoPtr-

Specification of CAN Driver
AUTOSAR Release 4.2.2

71 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

>SduDataPtr and update the length of the actual copied data in
PduInfoPtr->SduLength.
If not, it returns E_NOT_OK without changing PduInfoPtr.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,
because the processing of the event is done within the Dem main
function.
OBD Events Suppression shall be ignored for this computation.

Det_ReportError Service to report development errors.

EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also
be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

EcuM_SetWakeupEvent Sets the wakeup event.

Icu_DisableNotification This function disables the notification of a channel.

Icu_EnableNotification This function enables the notification on the given channel.

⌋ (SRS_SPAL_12056, SRS_Can_01054)

8.6.3 Configurable interfaces

There is no configurable target for the Can module. The Can module always reports
to CanIf module.

8.7 API supporting Pretended Networking

Can_SetIcomConfiguration

Service name: Can_SetIcomConfiguration

Syntax: Std_ReturnType Can_SetIcomConfiguration(

 uint8 Controller,

 IcomConfigIdType ConfigurationId

)

Service ID[hex]: 0xf

Sync/Async: Asynchronous

Reentrancy: Reentrant only for different controller Ids

Parameters (in):
Controller CAN controller for which the status shall be changed.

ConfigurationId Requested Configuration

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: CAN driver succeeded in setting a configuration with a
valid Configuration id.
E_NOT_OK: CAN driver failed to set a configuration with a valid
Configuration id.

Description: This service shall change the Icom Configuration of a CAN controller to the
requested one.

 [SWS_CAN_00480]⌈ The interface Can_SetIcomConfiguration() shall

activate or deactivate Pretended Networking and load the requested ICOM

configuration for a given controller.⌋ ()

[SWS_CAN_00481]⌈ If the requested ConfigurationId is not 0, the function

Can_SetIcomConfiguration() shall reconfigure the controller with the ICOM

Specification of CAN Driver
AUTOSAR Release 4.2.2

72 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

configuration parameters of the CanIcomConfig container which CanIcomConfigId

matches the requested ConfigurationId.⌋ ()

[SWS_CAN_00495]⌈ Can_SetIcomConfiguration() shall be pre compile time

configurable ON/OFF by the configuration parameter

CAN_PUBLIC_ICOM_SUPPORT.⌋ ()

[SWS_CAN_00475]⌈ If default error detection for CanDrv is enabled, then function

Can_SetIcomConfiguration() shall report the default error

CAN_E_ICOM_CONFIG_INVALID if it is called with an invalid ConfigurationId

(i.e. neither 0 nor any of the configured CanIcomConfigId).⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

73 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

9 Sequence diagrams

9.1 Interaction between Can and CanIf module

For sequence diagrams see the CanIf module Specification [5].
There are described the sequences for Transmission, Reception and Error Handling.

9.2 Wakeup sequence

For Wakeup sequence diagrams refer to Specification of ECU State Manager [7].

Specification of CAN Driver
AUTOSAR Release 4.2.2

74 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification Chapter 10.1 describes fundamentals. It also
specifies a template (table) you shall use for the parameter specification. We intend
to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Can
module.

Chapter 10.3 specifies published information of the Can module.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.
The described parameters are input for the Can module configurator.

[SWS_Can_00022] ⌈ The code configuration of the Can module is CAN controller

specific. If the CAN controller is sited on-chip, the code generation tool for the Can
module is µController specific. If the CAN controller is an external device, the

generation tool must not be µController specific.⌋ (SRS_BSW_00159)

[SWS_Can_00024] ⌈ The valid values that can be configured are hardware

dependent. Therefore the rules and constraints can’t be given in the standard. The
configuration tool is responsible to do a static configuration checking, also regarding
dependencies between modules (i.e. Port driver, MCU driver

etc.)⌋ (SRS_BSW_00167, SRS_SPAL_12463)

10.2.1 Variants

The Can module provides two variants of configuration sets:

[SWS_Can_00220] ⌈ VARIANT-PRE-COMPILE: Only pre-compile configuration

parameters.⌋ ()

[SWS_Can_00221] ⌈ VARIANT-POST-BUILD: Mix of pre compile- and post build

time configuration parameters.⌋ ()

Specification of CAN Driver
AUTOSAR Release 4.2.2

75 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Can :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanFilterMask :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

CanHardwareObject :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanController :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanGeneral :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanFilterMaskRef :

EcucReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanControllerRef :

EcucReferenceDef

CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

CanControllerBaudrateConfig :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanIcom :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer+subContainer

+subContainer+container

+reference+destination

+container

+subContainer

+subContainer

+destination

+reference

Figure 10-1: Can Module Configuration Layout

CanController :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanControllerActivation :

EcucBooleanParamDef

CanControllerId :

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

min = 0

max = 255

CanFilterMask :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

Can :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanRxProcessing :

EcucEnumerationParamDef

INTERRUPT :

EcucEnumerationLiteralDef

POLLING :

EcucEnumerationLiteralDef

CanTxProcessing :

EcucEnumerationParamDef

CanWakeupProcessing :

EcucEnumerationParamDef

CanBusoffProcessing :

EcucEnumerationParamDef

CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

CanCpuClockRef :

EcucReferenceDef

CanControllerBaseAddress :

EcucIntegerParamDef

min = 0

max = 4294967295

McuClockReferencePoint :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from MCU)

CanWakeupSourceRef :

EcucSymbolicNameReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanWakeupSupport :

EcucBooleanParamDef

CanControllerBaudrateConfig :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMWakeupSource :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

CanControllerDefaultBaudrate :

EcucReferenceDef

CanWakeupFunctionalityAPI :

EcucBooleanParamDef

defaultValue = false

+literal

+literal

+literal

+literal

+destination+reference

+parameter

+parameter

+parameter
+subContainer

+parameter

+literal

+literal

+literal

+parameter

+subContainer

+parameter

+container

+parameter

+reference

+destination

+reference +destination
+parameter

+subContainer

+parameter

+literal

Specification of CAN Driver
AUTOSAR Release 4.2.2

76 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Figure 10-2: Can Controller Configuration Layout

CanControllerSeg2 :

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg1 :

EcucIntegerParamDef

min = 0

max = 255

CanControllerPropSeg :

EcucIntegerParamDef

min = 0

max = 255

CanControllerBaudRate :

EcucIntegerParamDef

min = 0

max = 2000

CanControllerBaudrateConfig :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanControllerSyncJumpWidth :

EcucIntegerParamDef

min = 0

max = 255

CanControllerBaudRateConfigID :

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

CanControllerFdBaudrateConfig :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10-3: Can Controller Baud Rate Configuration Layout

Specification of CAN Driver
AUTOSAR Release 4.2.2

77 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanGeneral :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

Can :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanHardwareCancellation :

EcucBooleanParamDef

CanTimeoutDuration :

EcucFloatParamDef

min = 0.001

max = 65.535

CanMultiplexedTransmission :

EcucBooleanParamDef

CanDevErrorDetection :

EcucBooleanParamDef

CanVersionInfoApi :

EcucBooleanParamDef

CanIndex :EcucIntegerParamDef

min = 0

max = 255

CanMainFunctionReadPeriod :

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = *

min = 0.001

max = 65.535

CanMainFunctionWritePeriod :

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = *

min = 0.001

max = 65.535

CanMainFunctionBusoffPeriod :

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

min = 0.001

max = 65.535

CanMainFunctionWakeupPeriod :

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

min = 0.001

max = 65.535

CanMainFunctionModePeriod :

EcucFloatParamDef

min = 0.001

max = 65.535

CanIdenticalIdCancellation :

EcucBooleanParamDef

CanCounterRef :

EcucReferenceDef OsCounter :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from OS)

CanLPduReceiveCalloutFunction :

EcucFunctionNameDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanChangeBaudrateApi :

EcucBooleanParamDef

defaultValue = False

lowerMultiplicity = 0

upperMultiplicity = 1

CanMainFunctionRWPeriods :

EcucParamConfContainerDef

CanIcomGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanSetBaudrateApi :

EcucBooleanParamDef

defaultValue = False

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+reference
+destination

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

+parameter

+parameter

+subContainer

+parameter

+parameter

+parameter

+subContainer

+parameter

Figure 10-4: Can General Configuration Layout

Specification of CAN Driver
AUTOSAR Release 4.2.2

78 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanControllerFdBaudrateConfig :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanControllerFdBaudRate :

EcucIntegerParamDef

min = 0

max = 16000

CanControllerTxBitRateSwitch :

EcucBooleanParamDef

defaultValue = true

CanControllerPropSeg :

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg1 :

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg2 :

EcucIntegerParamDef

min = 0

max = 255

CanControllerSyncJumpWidth :

EcucIntegerParamDef

min = 0

max = 255

CanControllerTrcvDelayCompensationOffset :

EcucIntegerParamDef

min = 0

max = 400

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10-5: CanControllerFdBaudrateConfig

Specification of CAN Driver
AUTOSAR Release 4.2.2

79 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanHardwareObject :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanObjectType :

EcucEnumerationParamDef

CanIdValue :

EcucIntegerParamDef

min = 0

max = 4294967295

CanIdType :EcucEnumerationParamDef

TRANSMIT :

EcucEnumerationLiteralDef

RECEIVE :

EcucEnumerationLiteralDef

CanObjectId :

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

min = 0

max = 65535

STANDARD :

EcucEnumerationLiteralDef

EXTENDED :

EcucEnumerationLiteralDef

MIXED :

EcucEnumerationLiteralDef

CanFilterMaskRef :

EcucReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanFilterMask :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

Can :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanControllerRef :

EcucReferenceDef

CanController :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

CanHandleType :

EcucEnumerationParamDef

BASIC :

EcucEnumerationLiteralDef

FULL :

EcucEnumerationLiteralDef

CanMainFunctionRWPeriodRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanMainFunctionRWPeriods :

EcucParamConfContainerDef

CanHwObjectCount :

EcucIntegerParamDef

defaultValue = 1

lowerMultiplicity = 0

upperMultiplicity = 1

CanHwFilter :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanHwFilterCode :

EcucIntegerParamDef

min = 0

max = 4294967295

CanHwFilterMask :

EcucIntegerParamDef

min = 0

max = 4294967295

+literal

+reference

+destination

+subContainer

+parameter

+literal

+literal

+parameter

+destination

+reference

+parameter

+literal

+container

+parameter

+literal

+subContainer

+parameter

+reference

+destination

+parameter

+literal

+parameter+subContainer

+parameter

+literal

Figure 10-6: Can Hardware Object Configuration Layout

CanIcom :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanIcomConfig :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanIcomConfigId :

EcucIntegerParamDef

min = 1

max = 255

CanIcomWakeOnBusOff :

EcucBooleanParamDef

defaultValue = true

CanIcomWakeupCauses :

EcucParamConfContainerDef

+subContainer

+parameter

+parameter

+subContainer

Figure 10-7: CanICOM Layout

Specification of CAN Driver
AUTOSAR Release 4.2.2

80 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanIcomGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanIcomLevel :EcucEnumerationParamDef

defaultValue = CAN_ICOM_LEVEL_ONE

lowerMultiplicity = 0

upperMultiplicity = 1

CAN_ICOM_LEVEL_ONE :

EcucEnumerationLiteralDef

CAN_ICOM_LEVEL_TWO :

EcucEnumerationLiteralDef

CanIcomVariant :EcucEnumerationParamDef

defaultValue = CAN_ICOM_VARIANT_NONE

CAN_ICOM_VARIANT_NONE :

EcucEnumerationLiteralDef

CAN_ICOM_VARIANT_SW :

EcucEnumerationLiteralDef

CAN_ICOM_VARIANT_HW :

EcucEnumerationLiteralDef

+parameter

+parameter

+literal

+literal

+literal

+literal

+literal

Figure 10-8: CanICOM General Configuration Layout

CanIcomRxMessageSignalConfig :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanIcomSignalOperation :

EcucEnumerationParamDef

CanIcomSignalRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

AND :

EcucEnumerationLiteralDef

XOR :

EcucEnumerationLiteralDef

SMALLER :

EcucEnumerationLiteralDef

EQUAL :

EcucEnumerationLiteralDef

GREATER :

EcucEnumerationLiteralDef

ComSignal :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from Com)

CanIcomSignalMask :

EcucIntegerParamDef

min = 0

CanIcomSignalValue :

EcucIntegerParamDef

min = 0

+destination

+literal

+literal

+literal

+literal

+literal

+parameter

+parameter

+parameter

+reference

Figure 10-9: CanIcomRxMessageSignal Configuration Layout

Specification of CAN Driver
AUTOSAR Release 4.2.2

81 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanIcomWakeupCauses :

EcucParamConfContainerDef

CanIcomRxMessage :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanIcomCounterValue :

EcucIntegerParamDef

min = 1

max = 65536

lowerMultiplicity = 0

upperMultiplicity = 1

CanIcomMessageId :

EcucIntegerParamDef

min = 0

max = 536870912

lowerMultiplicity = 1

upperMultiplicity = 1

CanIcomMissingMessageTimerValue :

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanIcomPayloadLengthError :

EcucBooleanParamDef

defaultValue = false

CanIcomRxMessageSignalConfig :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanIcomMessageIdMask :

EcucIntegerParamDef

min = 0

max = 536870912

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+subContainer

+parameter

+subContainer

Figure 10-10: CanIcomWakeupCauses Configuration Layout

Specification of CAN Driver
AUTOSAR Release 4.2.2

82 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10.2.2 Can

Module Name Can

Module Description This container holds the configuration of a single CAN Driver.

Post-Build Variant Support true

Included Containers

Container Name Multiplicity Scope / Dependency

CanConfigSet 1
This container contains the configuration parameters and sub
containers of the AUTOSAR Can module.

CanGeneral 1
This container contains the parameters related each CAN
Driver Unit.

10.2.3 CanGeneral

SWS Item ECUC_Can_00328 :

Container Name CanGeneral

Description This container contains the parameters related each CAN Driver Unit.

Configuration Parameters

SWS Item ECUC_Can_00064 :

Name

CanDevErrorDetection

Description Switches the Default Error Tracer (Det) detection and notification ON or
OFF.

 true: enabled (ON).

 false: disabled (OFF).

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00320 :

Name

CanIndex

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of CAN Driver
AUTOSAR Release 4.2.2

83 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SWS Item ECUC_Can_00434 :

Name

CanLPduReceiveCalloutFunction

Description This parameter defines the existence and the name of a callout function
that is called after a successful
reception of a received CAN Rx L-PDU. If this parameter is omitted no
callout shall take place.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00355 :

Name

CanMainFunctionBusoffPeriod

Description This parameter describes the period for cyclic call to
Can_MainFunction_Busoff. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_Can_00376 :

Name

CanMainFunctionModePeriod

Description This parameter describes the period for cyclic call to
Can_MainFunction_Mode. Unit is seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Specification of CAN Driver
AUTOSAR Release 4.2.2

84 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Scope / Dependency

SWS Item ECUC_Can_00357 :

Name

CanMainFunctionWakeupPeriod

Description This parameter describes the period for cyclic call to
Can_MainFunction_Wakeup. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_Can_00095 :

Name

CanMultiplexedTransmission

Description Specifies if multiplexed transmission shall be supported.ON or OFF

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: CAN Hardware Unit supports multiplexed transmission

SWS Item ECUC_Can_00483 :

Name

CanPublicIcomSupport

Description Selects support of Pretended Network features in Can driver.
True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00482 :

Name

CanSetBaudrateApi

Description The support of the Can_SetBaudrate API is optional.
If this parameter is set to true the Can_SetBaudrate API shall be
supported. Otherwise the API is not supported.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Specification of CAN Driver
AUTOSAR Release 4.2.2

85 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00113 :

Name

CanTimeoutDuration

Description Specifies the maximum time for blocking function until a timeout is
detected. Unit is seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 1E-6 .. 65.535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00106 :

Name

CanVersionInfoApi

Description Switches the Can_GetVersionInfo() API ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00431 :

Name

CanOsCounterRef

Description This parameter contains a reference to the OsCounter, which is used by
the CAN driver.

Multiplicity 0..1

Type Reference to [OsCounter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00430 :

Specification of CAN Driver
AUTOSAR Release 4.2.2

86 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Name

CanSupportTTCANRef

Description The parameter refers to CanIfSupportTTCAN parameter in the CAN
Interface Module configuration.
The CanIfSupportTTCAN parameter defines whether TTCAN is supported.

Multiplicity 1

Type Reference to [CanIfPrivateCfg]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

CanIcomGeneral 0..1
This container contains the general configuration parameters
of the ICOM Configuration.

CanMainFunctionRWPeriods 0..*
This container contains the parameter for configuring the
period for cyclic call to Can_MainFunction_Read or
Can_MainFunction_Write depending on the referring item.

10.2.4 CanController

SWS Item ECUC_Can_00354 :

Container Name CanController

Description
This container contains the configuration parameters of the CAN
controller(s).

Configuration Parameters

SWS Item ECUC_Can_00314 :

Name

CanBusoffProcessing

Description Enables / disables API Can_MainFunction_BusOff() for handling busoff events in
polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Can_00315 :

Name

CanControllerActivation

Description Defines if a CAN controller is used in the configuration.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Specification of CAN Driver
AUTOSAR Release 4.2.2

87 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00382 :

Name

CanControllerBaseAddress

Description Specifies the CAN controller base address.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00316 :

Name

CanControllerId

Description This parameter provides the controller ID which is unique in a given CAN
Driver. The value for this parameter starts with 0 and continue without any
gaps.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00317 :

Name

CanRxProcessing

Description Enables / disables API Can_MainFunction_Read() for handling PDU reception
events in polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Can_00318 :

Name

CanTxProcessing

Description Enables / disables API Can_MainFunction_Write() for handling PDU transmission
events in polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

Specification of CAN Driver
AUTOSAR Release 4.2.2

88 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Can_00466 :

Name

CanWakeupFunctionalityAPI

Description Adds / removes the service Can_CheckWakeup() from the code.
True: Can_CheckWakeup can be used. False: Can_CheckWakeup cannot
be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: H/W should support the wakeup functionality to enable this
parameter.

SWS Item ECUC_Can_00319 :

Name

CanWakeupProcessing

Description Enables / disables API Can_MainFunction_Wakeup() for handling wakeup events
in polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Can_00330 :

Name

CanWakeupSupport

Description CAN driver support for wakeup over CAN Bus.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_Can_00435 :

Name

CanControllerDefaultBaudrate

Description Reference to baudrate configuration container configured for the Can
Controller.

Specification of CAN Driver
AUTOSAR Release 4.2.2

89 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Multiplicity 1

Type Reference to [CanControllerBaudrateConfig]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00313 :

Name

CanCpuClockRef

Description Reference to the CPU clock configuration, which is set in the MCU driver
configuration

Multiplicity 1

Type Reference to [McuClockReferencePoint]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00359 :

Name

CanWakeupSourceRef

Description This parameter contains a reference to the Wakeup Source for this
controller as defined in the ECU State Manager.
Implementation Type: reference to EcuM_WakeupSourceType

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanControllerBaudrateConfi
g

1..*
This container contains bit timing related configuration
parameters of the CAN controller(s).

CanTTController 0..1

CanTTController is specified in the SWS TTCAN and contains
the configuration parameters of the TTCAN controller(s) (which
are needed in addition to the configuration parameters of the
CAN controller(s)).
This container is only included and valid if TTCAN is supported
by the controller, enabled (see CanSupportTTCANRef,
ECUC_Can_00430), and used.

10.2.5 CanControllerBaudrateConfig

SWS Item ECUC_Can_00387 :

Container Name CanControllerBaudrateConfig

Specification of CAN Driver
AUTOSAR Release 4.2.2

90 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Description
This container contains bit timing related configuration parameters of the
CAN controller(s).

Configuration Parameters

SWS Item ECUC_Can_00005 :

Name

CanControllerBaudRate

Description Specifies the baudrate of the controller in kbps.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 2000

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00471 :

Name

CanControllerBaudRateConfigID

Description Uniquely identifies a specific baud rate configuration. This ID is used by
SetBaudrate API.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU
dependency: CanSetBaudrateApi

SWS Item ECUC_Can_00073 :

Name

CanControllerPropSeg

Description Specifies propagation delay in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00074 :

Name

CanControllerSeg1

Description Specifies phase segment 1 in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Specification of CAN Driver
AUTOSAR Release 4.2.2

91 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00075 :

Name

CanControllerSeg2

Description Specifies phase segment 2 in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00383 :

Name

CanControllerSyncJumpWidth

Description Specifies the synchronization jump width for the controller in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanControllerFdBaudrateConfi
g

0..1

This optional container contains bit timing related
configuration parameters of the CAN controller(s) for
payload and CRC of a CAN FD frame. If this container
exists the controller supports CAN FD frames.

10.2.6 CanControllerFdBaudrateConfig

SWS Item ECUC_Can_00473 :

Container Name CanControllerFdBaudrateConfig

Description
This optional container contains bit timing related configuration parameters
of the CAN controller(s) for payload and CRC of a CAN FD frame. If this
container exists the controller supports CAN FD frames.

Configuration Parameters

SWS Item ECUC_Can_00481 :

Name

CanControllerFdBaudRate

Description Specifies the data segment baud rate of the controller in kbps.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 16000

Default value --

Specification of CAN Driver
AUTOSAR Release 4.2.2

92 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00476 :

Name

CanControllerPropSeg

Description Specifies propagation delay in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00477 :

Name

CanControllerSeg1

Description Specifies phase segment 1 in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00478 :

Name

CanControllerSeg2

Description Specifies phase segment 2 in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00479 :

Name

CanControllerSyncJumpWidth

Description Specifies the synchronization jump width for the controller in time quantas.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Specification of CAN Driver
AUTOSAR Release 4.2.2

93 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00480 :

Name

CanControllerTrcvDelayCompensationOffset

Description Specifies the Transceiver Delay Compensation Offset in ns. If not specified
Transceiver Delay Compensation is disabled.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 400

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00475 :

Name

CanControllerTxBitRateSwitch

Description Specifies if the bit rate switching shall be used for transmissions.
If FALSE: CAN FD frames shall be sent without bit rate switching.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.7 CanHardwareObject

SWS Item ECUC_Can_00324 :

Container Name CanHardwareObject

Description
This container contains the configuration (parameters) of CAN Hardware
Objects.

Configuration Parameters

SWS Item ECUC_Can_00485 :

Name

CanFdPaddingValue

Description Specifies the value which is used to pad unspecified data in CAN FD
frames > 8 bytes for transmission. This is necessary due to the discrete
possible values of the DLC if > 8 bytes.
If the length of a PDU which was requested to be sent does not match the
allowed DLC values, the remaining bytes up to the next possible value

Specification of CAN Driver
AUTOSAR Release 4.2.2

94 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

shall be padded with this value.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value 0

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00323 :

Name

CanHandleType

Description Specifies the type (Full-CAN or Basic-CAN) of a hardware object.

Multiplicity 1

Type EcucEnumerationParamDef

Range BASIC For several L-PDUs are hadled by the
hardware object

FULL For only one L-PDU (identifier) is handled
by the hardware object

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: ECU
dependency: This configuration element is used as information for the CAN
Interface only. The relevant CAN driver configuration is done with the filter mask
and identifier.

SWS Item ECUC_Can_00467 :

Name

CanHwObjectCount

Description Number of hardware objects used to implement one HOH. In case of a
HRH this parameter defines the number of elements in the hardware FIFO
or the number of shadow buffers, in case of a HTH it defines the number of
hardware objects used for multiplexed transmission or for a hardware FIFO
used by a FullCAN HTH.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value 1

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Specification of CAN Driver
AUTOSAR Release 4.2.2

95 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SWS Item ECUC_Can_00065 :

Name

CanIdType

Description Specifies whether the IdValue is of type
- standard identifier

 - extended identifier
 - mixed mode

ImplementationType: Can_IdType

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED All the CANIDs are of type extended only
(29 bit).

MIXED The type of CANIDs can be both
Standard or Extended.

STANDARD All the CANIDs are of type standard only
(11bit).

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: ECU

SWS Item ECUC_Can_00326 :

Name

CanObjectId

Description Holds the handle ID of HRH or HTH. The value of this parameter is unique
in a given CAN Driver, and it should start with 0 and continue without any
gaps.
The HRH and HTH Ids share a common ID range.
Example: HRH0-0, HRH1-1, HTH0-2, HTH1-3

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00327 :

Name

CanObjectType

Description Specifies if the HardwareObject is used as Transmit or as Receive object

Multiplicity 1

Type EcucEnumerationParamDef

Range RECEIVE Receive HOH

TRANSMIT Transmit HOH

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of CAN Driver
AUTOSAR Release 4.2.2

96 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Scope /
Dependency

scope: ECU

SWS Item ECUC_Can_00486 :

Name

CanTriggerTransmitEnable

Description This parameter defines if or if not Can supports the trigger-transmit API for
this handle.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00322 :

Name

CanControllerRef

Description Reference to CAN Controller to which the HOH is associated to.

Multiplicity 1

Type Reference to [CanController]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Can_00438 :

Name

CanMainFunctionRWPeriodRef

Description Reference to CanMainFunctionPeriod

Multiplicity 0..1

Type Reference to [CanMainFunctionRWPeriods]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanHwFilter 0..*
This container is only valid for HRHs and contains the
configuration (parameters) of one hardware filter.

CanTTHardwareObjectTrigge
r

0..*

CanTTHardwareObjectTrigger is specified in the SWS
TTCAN and contains the configuration (parameters) of
TTCAN triggers for Hardware Objects, which are additional to
the configuration (parameters) of CAN Hardware Objects.
This container is only included and valid if TTCAN is
supported by the controller and, enabled (see
CanSupportTTCANRef, ECUC_Can_00430), and used.

Specification of CAN Driver
AUTOSAR Release 4.2.2

97 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10.2.8 CanHwFilter

SWS Item ECUC_Can_00468 :

Container Name CanHwFilter

Description
This container is only valid for HRHs and contains the configuration
(parameters) of one hardware filter.

Configuration Parameters

SWS Item ECUC_Can_00469 :

Name

CanHwFilterCode

Description Specifies (together with the filter mask) the identifiers range that passes
the hardware filter.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

SWS Item ECUC_Can_00470 :

Name

CanHwFilterMask

Description Describes a mask for hardware-based filtering of CAN identifiers. The CAN
identifiers of incoming messages are masked with the appropriate
CanFilterMaskValue. Bits holding a 0 mean don't care, i.e. do not compare
the message's identifier in the respective bit position.
The mask shall be build by filling with leading 0. In case of CanIdType
EXTENDED or MIXED a 29 bit mask shall be build. In case of CanIdType
STANDARD a 11 bit mask shall be build

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency dependency: The filter mask settings must be known by the CanIf
configuration for optimization of the SW filters.

No Included Containers

10.2.9 CanConfigSet

SWS Item ECUC_Can_00343 :

Container Name CanConfigSet

Description
This container contains the configuration parameters and sub containers of
the AUTOSAR Can module.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

Specification of CAN Driver
AUTOSAR Release 4.2.2

98 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanController 1..*
This container contains the configuration parameters of the
CAN controller(s).

CanHardwareObject 1..*
This container contains the configuration (parameters) of CAN
Hardware Objects.

CanIcom 0..1
This container contains the parameters for configuring
pretended networking

10.2.10 CanMainFunctionRWPeriods

SWS Item ECUC_Can_00437 :

Container Name CanMainFunctionRWPeriods

Description
This container contains the parameter for configuring the period for cyclic
call to Can_MainFunction_Read or Can_MainFunction_Write depending
on the referring item.

Configuration Parameters

SWS Item ECUC_Can_00484 :

Name

CanMainFunctionPeriod

Description This parameter describes the period for cyclic call to
Can_MainFunction_Read or Can_MainFunction_Write depending on the
referring item. Unit is seconds. Different poll-cycles will be configurable if
more than one CanMainFunctionPeriod is configured. In this case multiple
Can_MainFunction_Read() or Can_MainFunction_Write() will be provided
by the CAN Driver module.

Multiplicity 1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.11 CanIcom

SWS Item ECUC_Can_00440 :

Container Name CanIcom

Description
This container contains the parameters for configuring pretended
networking

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

CanIcomConfig 1..*
This container contains the configuration parameters of the
ICOM Configuration.

Specification of CAN Driver
AUTOSAR Release 4.2.2

99 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

10.2.12 CanIcomConfig

SWS Item ECUC_Can_00459 :

Container Name CanIcomConfig

Description
This container contains the configuration parameters of the ICOM
Configuration.

Configuration Parameters

SWS Item ECUC_Can_00441 :

Name

CanIcomConfigId

Description This parameter identifies the ID of the ICOM configuration.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00442 :

Name

CanIcomWakeOnBusOff

Description This parameter defines that the MCU shall wake if the bus off is detected
or not.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

CanIcomWakeupCauses 1
This container contains the configuration parameters of the
wakeup causes to leave the power saving mode.

10.2.13 CanIcomGeneral

SWS Item ECUC_Can_00444 :

Container Name CanIcomGeneral

Description
This container contains the general configuration parameters of the ICOM
Configuration.

Configuration Parameters

SWS Item ECUC_Can_00445 :

Name

CanIcomLevel

Description Defines the level of Pretended Networking.
This parameter is reserved for future implementations (Pretended Networking level
2).

Multiplicity 0..1

Specification of CAN Driver
AUTOSAR Release 4.2.2

100 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Type EcucEnumerationParamDef

Range CAN_ICOM_LEVEL_ONE --

CAN_ICOM_LEVEL_TWO --

Default value CAN_ICOM_LEVEL_ONE

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

SWS Item ECUC_Can_00446 :

Name

CanIcomVariant

Description Defines the variant, which is supported by this CanController

Multiplicity 1

Type EcucEnumerationParamDef

Range CAN_ICOM_VARIANT_HW --

CAN_ICOM_VARIANT_NONE --

CAN_ICOM_VARIANT_SW --

Default value CAN_ICOM_VARIANT_NONE

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

No Included Containers

10.2.14 CanIcomRxMessage

SWS Item ECUC_Can_00447 :

Container Name CanIcomRxMessage

Description

This container contains the configuration parameters for the wakeup
causes for matching received messages. It has to be configured as often
as received messages are defined as wakeup cause.
constraint: For all CanIcomRxMessage instances the Message IDs which
are defined in CanIcomMessageId and in CanIcomRxMessageIdMask
shall not overlap.

Configuration Parameters

SWS Item ECUC_Can_00448 :

Name

CanIcomCounterValue

Description This parameter defines that the MCU shall wake if the message with the ID
is received n times on the communication channel.

Multiplicity 0..1

Specification of CAN Driver
AUTOSAR Release 4.2.2

101 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Type EcucIntegerParamDef

Range 1 .. 65536

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00449 :

Name

CanIcomMessageId

Description This parameter defines the message ID the wakeup causes of this
CanIcomRxMessage are configured for. In addition a mask
(CanIcomMessageIdMask) can be defined, in that case it is possible to
define a range of rx messages, which can create a wakeup condition.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 536870912

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00465 :

Name

CanIcomMessageIdMask

Description Describes a mask for filtering of CAN identifiers. The CAN identifiers of
incoming messages are masked with this CanIcomMessageIdMask. If the
masked identifier matches the masked value of CanIcomMessageId, it can
create a wakeup condition for this CanIcomRxMessage. Bits holding a 0
mean don't care, i.e. do not compare the message's identifier in the
respective bit position. The mask shall be build by filling with leading 0.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 536870912

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Specification of CAN Driver
AUTOSAR Release 4.2.2

102 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

Scope / Dependency scope: ECU
dependency: CanIcomMessageIdMask and
CanIcomRxMessageSignalConfig shall not be defined together.

SWS Item ECUC_Can_00450 :

Name

CanIcomMissingMessageTimerValue

Description This parameter defines that the MCU shall wake if the message with the ID
is not received for a specific time in s on the
communication channel.

Multiplicity 0..1

Type EcucFloatParamDef

Range -INF .. INF

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Can_00451 :

Name

CanIcomPayloadLengthError

Description This parameter defines that the MCU shall wake if a payload error occurs

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

CanIcomRxMessageSignalConfi
g

0..*

This container contains the configuration parameters for
the wakeup causes for matching signals.
It has to be configured as often as a signal is defined as
wakeup cause. If at least one Signal conditions defined in
a CanIcomRxMessageSignalConfig evaluates to true or if
no CanIcomRxMessageSignalConfig are defined, the
whole wakeup condition is considered to be true. All
instances of this container refer to the same frame/pdu
(see CanIcomMessageId).

10.2.15 CanIcomRxMessageSignalConfig

SWS Item ECUC_Can_00452 :

Container Name CanIcomRxMessageSignalConfig

Description This container contains the configuration parameters for the wakeup

Specification of CAN Driver
AUTOSAR Release 4.2.2

103 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

causes for matching signals. It has to be configured as often as a signal is
defined as wakeup cause. If at least one Signal conditions defined in a
CanIcomRxMessageSignalConfig evaluates to true or if no
CanIcomRxMessageSignalConfig are defined, the whole wakeup condition
is considered to be true. All instances of this container refer to the same
frame/pdu (see CanIcomMessageId).

Configuration Parameters

SWS Item ECUC_Can_00487 :

Name

CanIcomSignalMask

Description This parameter shall be used to mask a signal in the payload of a CAN
message.
The mask is binary AND with the signal payload. The result will be used in
combination of the operations defined in CanIcomSignalOperation with the
CanIcomSignalValue.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00462 :

Name

CanIcomSignalOperation

Description This parameter defines the operation, which shall be used to verify the signal value
creates a wakeup condition.

Multiplicity 1

Type EcucEnumerationParamDef

Range AND The received signal value masked by
CanIcomSignalMask has at least one bit
set in common with CanIcomSignalValue
(binary AND).

EQUAL The received signal value masked by
CanIcomSignalMask is equal to
CanIcomSignalValue.

GREATER The received signal value masked by
CanIcomSignalMask is strictly greater than
CanIcomSignalValue. Values are
interpreted as unsigned integers.

SMALLER The received signal value masked by
CanIcomSignalMask is strictly smaller than
CanIcomSignalValue. Values are
interpreted as unsigned integers.

XOR The received signal value masked by
CanIcomSignalMask then XORed to
CanIcomSignalValue is not null.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

Specification of CAN Driver
AUTOSAR Release 4.2.2

104 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

SWS Item ECUC_Can_00488 :

Name

CanIcomSignalValue

Description This parameter shall be used to define a signal value which shall be
compared (CanIcomSignalOperation) with the masked
CanIcomSignalMask value of the received signal (CanIcomSignalRef).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Can_00456 :

Name

CanIcomSignalRef

Description This parameter defines a reference to the signal which shall be checked
additional to the message id (CanIcomMessageId).
This reference is used for documentation to define which ComSignal
originates this filter setting. All signals being referred by this reference shall
point to the same PDU.

Multiplicity 0..1

Type Reference to [ComSignal]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: The signal referenced by CanIcomSignalRef shall be
included in a ComIPdu which matches with the current CAN Controller and
the CAN Identifier (CanIcomMessageId) configured for this
CanIcomRxMessage.

No Included Containers

10.2.16 CanIcomWakeupCauses

SWS Item ECUC_Can_00443 :

Container Name CanIcomWakeupCauses

Description
This container contains the configuration parameters of the wakeup
causes to leave the power saving mode.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

Specification of CAN Driver
AUTOSAR Release 4.2.2

105 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

CanIcomRxMessage 1..*

This container contains the configuration parameters for the
wakeup causes for matching received messages. It has to be
configured as often as received messages are defined as
wakeup cause.
constraint: For all CanIcomRxMessage instances the Message
IDs which are defined in CanIcomMessageId and in
CanIcomRxMessageIdMask shall not overlap.

Specification of CAN Driver
AUTOSAR Release 4.2.2

106 of 106 Document ID 011: AUTOSAR_SWS_CANDriver

 - AUTOSAR confidential -

11 Not applicable requirements

[SWS_Can_00999] ⌈ These requirements are not applicable to this specification. ⌋
(SRS_BSW_00170, SRS_BSW_00383, SRS_BSW_00395, SRS_BSW_00397,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00168,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00429, SRS_BSW_00433, SRS_BSW_00336,
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00409, SRS_BSW_00455,
SRS_BSW_00162, SRS_BSW_00415, SRS_BSW_00325, SRS_BSW_00326,
SRS_BSW_00342, SRS_BSW_00453, SRS_BSW_00413, SRS_BSW_00307,
SRS_BSW_00447, SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00439,
SRS_BSW_00449, SRS_BSW_00378, SRS_BSW_00359, SRS_BSW_00440,
BSW00443, BSW00444, BSW00445, BSW00446, SRS_SPAL_12163,
SRS_SPAL_12462, SRS_SPAL_12068, SRS_SPAL_12064, SRS_Can_01125,
SRS_Can_01126)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Priority Inversion
	2.2 CAN Hardware Unit

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Static Configuration
	5.2 Driver Services
	5.3 System Services
	5.4 Can module Users
	5.5 File structure
	5.5.1 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Driver scope
	7.2 Driver State Machine
	7.3 CAN Controller State Machine
	7.3.1 CAN Controller State Description
	7.3.2 CAN Controller State Transitions
	7.3.3 State transition caused by function Can_Init
	7.3.4 State transition caused by function Can_SetBaudrate
	7.3.5 State transition caused by function Can_SetControllerMode
	7.3.6 State transition caused by Hardware Events

	7.4 Can module/Controller Initialization
	7.5 L-PDU transmission
	7.5.1 Priority Inversion
	7.5.2 Transmit Data Consistency

	7.6 L-PDU reception
	7.6.1 Receive Data Consistency

	7.7 Wakeup concept
	7.8 Notification concept
	7.9 Reentrancy issues
	7.10 Pretended Networking
	7.10.1 Support Pretended Networking mode handling
	7.10.2 Support autonomous sending and receiving of messages

	7.11 Error classification
	7.11.1 Development Errors
	7.11.2 Runtime Errors
	7.11.3 Transient Faults
	7.11.4 Production Errors
	7.11.5 Return Values

	7.12 CAN FD Support

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Can_ConfigType
	8.2.2 Can_PduType
	8.2.3 Can_IdType
	8.2.4 Can_HwHandleType
	8.2.5 Can_HwType
	8.2.6 Can_StateTransitionType
	8.2.7 Can_ReturnType

	8.3 Function definitions
	8.3.1 Services affecting the complete hardware unit
	8.3.1.1 Can_Init
	8.3.1.2 Can_GetVersionInfo
	8.3.1.3 Can_CheckBaudrate

	8.3.2 Services affecting one single CAN Controller
	8.3.2.1 Can_ChangeBaudrate
	8.3.2.2 Can_SetBaudrate
	8.3.2.3 Can_SetControllerMode
	8.3.2.4 Can_DisableControllerInterrupts
	8.3.2.5 Can_EnableControllerInterrupts
	8.3.2.6 Can_CheckWakeup

	8.3.3 Services affecting a Hardware Handle
	8.3.3.1 Can_Write

	8.4 Call-back notifications
	8.4.1 Call-out function
	8.4.2 Enabling/Disabling wakeup notification

	8.5 Scheduled functions
	8.5.1.1 Can_MainFunction_Write
	8.5.1.2 Can_MainFunction_Read
	8.5.1.3 Can_MainFunction_BusOff
	8.5.1.4 Can_MainFunction_Wakeup
	8.5.1.5 Can_MainFunction_Mode

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	8.7 API supporting Pretended Networking

	9 Sequence diagrams
	9.1 Interaction between Can and CanIf module
	9.2 Wakeup sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Can
	10.2.3 CanGeneral
	10.2.4 CanController
	10.2.5 CanControllerBaudrateConfig
	10.2.6 CanControllerFdBaudrateConfig
	10.2.7 CanHardwareObject
	10.2.8 CanHwFilter
	10.2.9 CanConfigSet
	10.2.10 CanMainFunctionRWPeriods
	10.2.11 CanIcom
	10.2.12 CanIcomConfig
	10.2.13 CanIcomGeneral
	10.2.14 CanIcomRxMessage
	10.2.15 CanIcomRxMessageSignalConfig
	10.2.16 CanIcomWakeupCauses

	11 Not applicable requirements

